血栓闭塞性脉管炎患者血浆源性外泌体miR-223-5p对人血管平滑肌细胞的影响

陈波, 林学广, 邓颖, 王博, 童进东, 余波, 史卫军, 汤敬东

复旦学报(医学版) ›› 2022, Vol. 49 ›› Issue (05) : 677-689.

PDF(1872 KB)
欢迎访问《复旦学报(医学版)》官方网站,今天是 2025年5月9日 星期五 分享到:
PDF(1872 KB)
复旦学报(医学版) ›› 2022, Vol. 49 ›› Issue (05) : 677-689. DOI: 10.3969/j.issn.1672-8467.2022.05.007
论著

血栓闭塞性脉管炎患者血浆源性外泌体miR-223-5p对人血管平滑肌细胞的影响

  • 陈波1,2, 林学广1,2, 邓颖1,2, 王博1,2, 童进东1,2, 余波1,2,3, 史卫军1,2, 汤敬东1,2
作者信息 +

Effect of plasma derived exosomal miR-223-5p on human vascular smooth muscle cells in patients with thromboangiitis obliterans

  • CHEN Bo1,2, LIN Xue-guang1,2, DENG Ying1,2, WANG Bo1,2, TONG Jin-dong1,2, YU Bo1,2,3, SHI Wei-jun1,2, TANG Jing-dong1,2
Author information +
文章历史 +

摘要

目的 探究血栓闭塞性脉管炎(thromboangiitis obliterans,TAO)患者血浆源性外泌体中miRNAs对人血管平滑肌细胞(human vascular smooth muscle cell,HVSMC)的影响。方法 从TAO患者和健康对照的血浆中提纯外泌体,进行miRNA测序。通过生物信息学分析鉴定差异表达的miRNA(differentially expressed miRNA,DE-miRNA),用RT-qPCR进一步验证。将PKH67荧光标记的外泌体与HVSMC共培养,采用CCK-8法和流式细胞术分别检测HVSMC的细胞活力和凋亡。使用双荧光素酶报告分析并确认miR-223-5p的下游靶点。结果 在TAO患者和健康对照之间共发现39个DE-miRNA,其中miR-223-5p是显著上调的miRNA。TAO患者血浆外泌体或miR-223-5p模拟物能降低HVSMC的细胞活力并促进细胞凋亡,miR-223-5p抑制剂可削弱TAO患者血浆源性外泌体的抑制和促凋亡作用。血管内皮细胞黏附分子1(vascular endothelial cell adhesion molecule-1,VCAM-1)和胰岛素样生长因子1受体(insulin-like growth factor-1 receptor,IGF-1R)的表达被TAO患者血浆源性外泌体和miR-223-5p模拟物下调,这一下调作用可被miR-223-5p抑制剂所抑制。双荧光素酶报告提示VCAM-1是miR-223-5p的靶点。结论 TAO患者血浆源性外泌体可能通过miR-223-5p/VCAM-1途径抑制HVSMC的细胞活力并促进细胞凋亡,从而在TAO的发生发展中起作用。

Abstract

Objective To investigate the effect of miRNAs in plasma exosomes of patients with thromboangiitis obliterans (TAO) on human vascular smooth muscle cells (HVSMCs).Methods Exosomes were purified from the plasma of TAO patients and healthy controls, and miRNA was sequenced.The differentially expressed miRNA (DE-miRNA) were identified by bioinformatics analysis and further verified by RT-qPCR.Then, PKH67 fluorescently labeled exosomes were co-cultured with HVSMCs.Cell viability and apoptosis of HVSMCs were detected by CCK-8 assay and flow cytometry, respectively.Finally, the downstream targets of mir-223-5p were analyzed and identified using dual luciferase reports.Results A total of 39 DE-miRNAs were detected between TAO patients and healthy controls, among which miR-223-5p was one of the most significantly up-regulated miRNAs. Plasma-derived exosomes or miR-223-5p mimics from TAO patients can reduce cell viability of HVSMCs and promote their apoptosis, while miR-223-5p inhibitors can weaken the inhibitory activity and pro-apoptotic effect of plasma-derived exosomes from TAO patients. In addition, the expressions of vascular endothelial cell adhesion molecule-1 (VCAM-1) and insulin-like growth factor-1 receptor (IGF-1R) were down-regulated by plasma exosomes and miR-223-5p mimics from TAO patients, and its down-regulation was inhibited by miR-223-5p inhibitors. Dual luciferase reports suggested that VCAM-1 was the target of miR-223-5p.Conclusion Plasma derived exosomes from TAO patients may inhibit cell viability and promote apoptosis of HVSMCs through miR-223-5p/VCAM-1 pathway, which plays a role in the occurrence and development of TAO.

关键词

血浆外泌体 / miRNA / 血管平滑肌细胞(HVSMC) / 生物信息学 / 血栓闭塞性脉管炎(TAO)

Key words

plasma exosome / miRNA / vascular smooth muscle cell (HVSMC) / bioinformatics / thromboangiitis obliterans (TAO)

引用本文

导出引用
陈波, 林学广, 邓颖, 王博, 童进东, 余波, 史卫军, 汤敬东. 血栓闭塞性脉管炎患者血浆源性外泌体miR-223-5p对人血管平滑肌细胞的影响[J]. 复旦学报(医学版), 2022, 49(05): 677-689 https://doi.org/10.3969/j.issn.1672-8467.2022.05.007
CHEN Bo, LIN Xue-guang, DENG Ying, WANG Bo, TONG Jin-dong, YU Bo, SHI Wei-jun, TANG Jing-dong. Effect of plasma derived exosomal miR-223-5p on human vascular smooth muscle cells in patients with thromboangiitis obliterans[J]. Fudan University Journal of Medical Sciences, 2022, 49(05): 677-689 https://doi.org/10.3969/j.issn.1672-8467.2022.05.007
中图分类号: R654.4   

参考文献

[1] YANG L, TANG J, TIAN Y, et al. The preliminary outcome of laser-assisted angioplasty combined with endovascular radiofrequency ablation for thromboangiitis obliterans[J]. Adv Ther, 2021, 38(12):5700-5709.
[2] SHAREBIANI H, FAZELI B, MANISCALCO R, et al. The imbalance among oxidative biomarkers and antioxidant defense systems in thromboangiitis obliterans (Winiwarter-Buerger disease)[J]. J Clin Med, 2020, 9(4):1-15.
[3] LE JONCOUR A, SOUDET S, DUPONT A, et al. Long-term outcome and prognostic factors of complications in thromboangiitis obliterans (Buerger's disease):a multicenter study of 224 patients[J]. J Am Heart Assoc, 2018, 7(23):1-9.
[4] LI MD, WANG YF, YANG MW, et al. Risk factors, mechanisms and treatments of thromboangiitis obliterans:an overview of recent research[J]. Curr Med Chem, 2020, 27(35):6057-6072.
[5] WANG Y, LIU Q, WANG F. Potential roles of exosome noncoding RNAs in cancer chemoresistance (Review)[J]. Oncol Rep, 2021, 45(2):439-447.
[6] HEIDARI N, ABBASI-KENARSARI H, NAMAKI S, et al. Adipose-derived mesenchymal stem cell-secreted exosome alleviates dextran sulfate sodium-induced acute colitis by Treg cell induction and inflammatory cytokine reduction[J]. J Cell Physiol, 2021, 236(8):5906-5920.
[7] SKURATOVSKAIA D, VULF M, KHAZIAKHMATOVA O, et al. Exosome limitations in the treatment of inflammatory diseases[J]. Curr Pharm Des, 2021, 27(28):3105-3121.
[8] MIGNEAULT F, DIEUDE M, TURGEON J, et al. Apoptotic exosome-like vesicles regulate endothelial gene expression, inflammatory signaling, and function through the NF-kappaB signaling pathway[J]. Sci Rep, 2020, 10(1):1-15.
[9] WANG L, JIA Q, CHEN X, et al. Role of cardiac progenitor cell-derived exosome-mediated microRNA-210 in cardiovascular disease[J]. J Cell Mol Med, 2019, 23(11):7124-7131.
[10] LIN X, ZHU T, XU F, et al. Plasma exosomes derived from patients with end-stage renal disease and renal transplant recipients have different effects on vascular calcification[J]. Front Cell Dev Biol, 2020, 8:1-10.
[11] LIN Y, ANDERSON JD, RAHNAMA L, et al. Exosomes in disease and regeneration:biological functions, diagnostics, and beneficial effects[J]. Am J Physiol Heart Circ Physiol, 2020, 319(6):H1162-H1180.
[12] XU Z, ZENG S, GONG Z, et al. Exosome-based immunotherapy:a promising approach for cancer treatment[J]. Mol Cancer, 2020, 19(1):1-16.
[13] ZANG X, GU J, ZHANG J, et al. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression[J]. Cell Death Dis, 2020, 11(4):1-13.
[14] MUGHEES M, KUMAR K, WAJID S. Exosome vesicle as a nano-therapeutic carrier for breast cancer[J]. J Drug Target, 2021, 29(2):121-130.
[15] HOSSEINI M, ROSHANGAR L, RAEISI S, et al. The therapeutic applications of exosomes in different types of diseases:a review[J]. Curr Mol Med, 2021, 21(2):87-95.
[16] LASSER C, ELDH M, LOTVALL J. Isolation and characterization of RNA-containing exosomes[J]. J Vis Exp, 2012(59):e3037:1-6.
[17] GURUNATHAN S, KANG MH, JEYARAJ M, et al. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes[J]. Cells, 2019, 8(4):307.
[18] ZHU L, SUN HT, WANG S, et al. Isolation and characterization of exosomes for cancer research[J]. J Hematol Oncol, 2020, 13(1):1-37.
[19] NAWROCKI EP, BURGE SW, BATEMAN A, et al. Rfam 12.0:updates to the RNA families database[J]. Nucleic Acids Res, 2015, 43(Database issue):D130-D137.
[20] FRIEDLANDER MR, MACKOWIAK SD, LI N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Res, 2012, 40(1):37-52.
[21] GAO D, KIM J, KIM H, et al. A survey of statistical software for analysing RNA-seq data[J]. Hum Genomics, 2010, 5(1):56-60.
[22] ZHANG J, ZOU S, DENG L. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk[J]. BMC Med Genomics, 2018, 11(Suppl 5):1-10.
[23] KANEHISA M, SATO Y. KEGG Mapper for inferring cellular functions from protein sequences[J]. Protein Sci, 2020, 29(1):28-35.
[24] ROUSSELLE C, BARBIER M, COMTE VV, et al. Innocuousness and intracellular distribution of PKH67:a fluorescent probe for cell proliferation assessment[J]. In Vitro Cell Dev Biol Anim, 2001, 37(10):646-655.
[25] MAHGOUB EO, RAZMARA E, BITARAF A, et al. Advances of exosome isolation techniques in lung cancer[J]. Mol Biol Rep, 2020, 47(9):7229-7251.
[26] LI Z, YE L, WANG L, et al. Identification of miRNA signatures in serum exosomes as a potential biomarker after radiotherapy treatment in glioma patients[J]. Ann Diagn Pathol, 2020, 44:151436.
[27] ZHAO M, LI YP, GENG XR, et al. Expression level of miRNA-126 in serum exosomes of allergic asthma patients and lung tissues of asthmatic mice[J]. Curr Drug Metab, 2019, 20(10):799-803.
[28] SMOLARZ M, WIDLAK P. Serum exosomes and their miRNA load-A potential biomarker of lung cancer[J]. Cancers (Basel), 2021, 13(6):1-20.
[29] NIE H, XIE X, ZHANG D, et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer[J]. Nanoscale, 2020, 12(2):877-887.
[30] ESSAM RM, AHMED LA, ABDELSALAM RM, et al. Phosphodiestrase-1 and 4 inhibitors ameliorate liver fibrosis in rats:Modulation of cAMP/CREB/TLR4 inflammatory and fibrogenic pathways[J]. Life Sci, 2019, 222:245-254.
[31] MURAKI Y, NAITO T, TOHYAMA K, et al. Improvement of pulmonary arterial hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of monocrotaline-induced pulmonary hypertension[J]. Biosci Biotechnol Biochem, 2019, 83(6):1000-1010.
[32] DING L, YANG X, GAO Z, et al. A holistic review of the state-of-the-art Microfluidics for exosome separation:An overview of the current status, existing obstacles, and future outlook[J]. Small, 2021, 17(29):1-19.
[33] HAM S, LIMA LG, CHAI E, et al. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling[J]. Front Immunol, 2018, 9:1-10.
[34] WANG Y, JIAO J, REN P, et al. Upregulation of miRNA-223-3p ameliorates RIP3-mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury[J]. J Cell Biochem, 2019:doi:10.1002/jcb.28438.
[35] ORENES-PINERO E, MARIN F, LIP GY. miRNA-197 and miRNA-223 and cardiovascular death in coronary artery disease patients[J]. Ann Transl Med, 2016, 4(10):1-3.
[36] SCHULTE C, MOLZ S, APPELBAUM S, et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease[J]. PLoS One, 2015, 10(12):1-12.
[37] LI S, CHEN L, ZHOU X, et al. miRNA-223-3p and let-7b-3p as potential blood biomarkers associated with the ischemic penumbra in rats[J]. Acta Neurobiol Exp (Wars), 2019, 79(2):205-216.
[38] WAN L, YUAN X, LIU M, et al. miRNA-223-3p regulates NLRP3 to promote apoptosis and inhibit proliferation of hep3B cells[J]. Exp Ther Med, 2018, 15(3):2429-2435.
[39] WANG X, HUANG W, YANG Y, et al. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis[J]. Biochim Biophys Acta, 2014, 1842(5):701-711.
[40] WU X, YANG J, YU L, et al. Plasma miRNA-223 correlates with risk, inflammatory markers as well as prognosis in sepsis patients[J]. Medicine (Baltimore), 2018, 97(27):1-6.
[41] SHI X, XIE X, SUN Y, et al. Paeonol inhibits NLRP3 mediated inflammation in rat endothelial cells by elevating hyperlipidemic rats plasma exosomal miRNA-223[J]. Eur J Pharmacol, 2020, 885:173473:1-8.
[42] TRONCOSO MF, ORTIZ-QUINTERO J, GARRIDO-MORENO V, et al. VCAM-1 as a predictor biomarker in cardiovascular disease[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(9):166170:1-13.
[43] CARR RM. VCAM-1:closing the gap between lipotoxicity and endothelial dysfunction in nonalcoholic steatohepatitis[J]. J Clin Invest, 2021, 131(6):1-3.
[44] KONG LJ, WANG YN, WANG Z, et al. NOD2 induces VCAM-1 and ET-1 gene expression via NF-kappaB in human umbilical vein endothelial cells with muramyl dipeptide stimulation[J]. Herz, 2021, 46(Suppl 2):265-271.
[45] ESSANDOH K, DENG S, WANG X, et al. Tsg101 positively regulates physiologic-like cardiac hypertrophy through FIP3-mediated endosomal recycling of IGF-1R[J]. FASEB J, 2019, 33(6):7451-7466.
[46] SOHRABI M, FLODEN AM, MANOCHA GD, et al. IGF-1R inhibitor ameliorates neuroinflammation in an Alzheimer's disease transgenic mouse model[J]. Front Cell Neurosci, 2020, 14:1-14.
[47] HUANG K, DONG X, SUI C, et al. MiR-223 suppresses endometrial carcinoma cells proliferation by targeting IGF-1R[J]. Am J Transl Res, 2014, 6(6):841-849.
[48] WANG H, WANG Q, KLEIMAN K, et al. Hematopoietic deficiency of miR-223 attenuates thrombosis in response to photochemical injury in mice[J]. Sci Rep, 2017, 7(1):1-7.
[49] SONG F, JI B, CHEN T. Cilostazol on the expression of ICAM-1, VCAM-1 and inflammatory factors in plasma in patients with thromboangiitis obliterans[J]. Exp Ther Med, 2018, 16(3):2349-2354.
[50] CHEN Q, WANG H, LIU Y, et al. Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3[J]. PLoS One, 2012, 7(8):1-12.

基金

上海市浦东新区卫健委卫生计生科研项目(PW2019E-5);上海市卫健委临床研究项目(202150004)
PDF(1872 KB)

1028

Accesses

0

Citation

Detail

段落导航
相关文章

/