目的 比较基于靶扫描CT(targeted CT,T-CT)和常规扫描CT(conventional CT,C-CT)图像建立的CT影像组学特征集预测肺磨玻璃结节(ground-glass nodules,GGN)2年生长的价值,并建立影像组学列线图以帮助管理GGN。方法 回顾性收集2018年10月—2019年1月间414个随访肺GGN的T-CT、C-CT图像和临床资料,并按7∶3分为训练组(n=290)和验证组(n=124)。分别采用最小绝对收缩与选择算法逻辑回归、多因素逻辑回归筛选GGN 2年生长相关的影像组学特征及临床特征,构建影像组学特征集、临床特征集,结合成影像组学列线图。采用Delong检验比较基于T-CT和C-CT图像建立的CT影像组学特征集,并分别用C-CT和T-CT数据进行交叉预测。分别采用受试者工作特征曲线下面积(AUC)和临床决策曲线评估各模型效能和临床实用性。结果 T-CT和C-CT图像分别筛选出7个和6个特征用于构建影像组学特征集,两者AUC差异无统计学意义。筛选出年龄、性别和毛刺征3个临床特征构建临床特征集,结合C-CT影像组学特征集构建影像组学列线图。影像组学列线图在训练组和验证组中的AUC分别为0.948和0.933。临床特征的纳入未能显著提高模型预测效能(训练组和验证组P值分别为0.168和0.160),影像组学列线图较影像组学特征集获得更高临床净收益。结论 T-CT和C-CT影像组学特征集均能有效预测GGN的2年生长,且差异无统计学意义。影像组学列线图较影像组学特征集获得更高临床净收益,有助于管理GGN。
Abstract
Objectives To compare the value of radiomics signatures based on targeted CT (T-CT) and conventional CT (C-CT) images in predicting the two-year growth of pulmonary ground-glass nodules (GGNs), and to establish a radiomics nomogram to help manage GGNs. Methods T-CT and C-CT images and clinical data of 414 follow-up pulmonary GGNs from Oct 2018 to Jan 2019 were retrospectively reviewed and divided in 7: 3 ratio into the training group (n=290) and validation group (n=124). The least absolute shrinkage and selection operator and multivariate Logistic regression were used respectively to select the radiomics features and clinical features associated with GGNs' two-year growth to form the radiomics signatures and clinical signature, which were combined to construct the radiomics nomogram. The prediction performances of T-CT and C-CT radiomics signatures were compared by Delong test and were validated crossly using C-CT and T-CT images, respectively. The area under the curve (AUC) of receiver operating characteristic and clinical decisive curve were used to evaluate the prediction performance and clinical usefulness of the models. Results Based on T-CT and C-CT images, 7 and 6 radiomics features were selected to form the radiomics signatures, respectively. There was no significant AUC difference between the two radiomics signatures. The age, gender and spiculation were selected to form the clinical signature, which was combined with C-CT radiomics signature to construct a radiomics nomogram. The radiomics nomogram yielded AUCs of 0.948 and 0.933 respectively in the training and validation group. The radiomics nomogram combined with clinical features did not significantly improve the prediction performance (P=0.168, 0.160 in the training and validation groups, respectively), but did achieve a higher clinical net benefit than radiomics signature. Conclusions Both T-CT and C-CT radiomics signatures could effectively predict the two-year growth of GGNs. The radiomics nomogram achieved a higher clinical net benefit than radiomics signature and was helpful for the management of GGNs.
关键词
体层摄影术 /
X线计算机 /
影像组学 /
列线图 /
磨玻璃结节(GGN) /
生长
{{custom_keyword}} /
Key words
tomography, X-ray computed /
radiomics /
nomogram /
ground-glass nodules (GGN) /
growth
{{custom_keyword}} /
中图分类号:
R734.2
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide:sources, methods and major patterns in GLOBOCAN 2012[J]. In J Cancer, 2015, 136(5):E359-E386.
[2] 郑荣寿, 孙可欣, 张思维, 等.2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28.
[3] TRAVIS WD, BRAMBILLA E, NOGUCHI M, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society:international multidisciplinary classification of lung adenocarcinoma:executive summary[J]. Proc Am Thorac Soc, 2011, 8(5):381-385.
[4] MIYATA T, YANAGAWA M, HATA A, et al. Influence of field of view size on image quality:ultra-high-resolution CT vs.conventional high-resolution CT[J]. Eur Radiol, 2020, 30(6):3324-3333.
[5] LAMBIN P, LEIJENAAR RTH, DEIST TM, et al. Radiomics:the bridge between medical imaging and personalized medicine[J]. Nat Rev Clin Oncol, 2017, 14(12):749-762.
[6] ZHU H, ZHANG L, WANG Y, et al. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV:a prospective study[J]. PLoS One, 2017, 12(2):e0172688.
[7] DE HOOP B, GIETEMA H, DE VORST SVAN, et al. Pulmonary ground-glass nodules:increase in mass as an early indicator of growth[J]. Radiology, 2010, 255(1):199-206.
[8] TAN M, MA W, SUN Y, et al. Prediction of the growth rate of early-stage lung adenocarcinoma by radiomics[J]. Front Oncol, 2021, 11:658138
[9] YOON HJ, PARK H, LEE HY, et al. Prediction of tumor doubling time of lung adenocarcinoma using radiomic margin characteristics[J]. Thorac Cancer, 2020, 11(9):2600-2609.
[10] QIU T, RU X, YIN K, et al. Two nomograms based on CT features to predict tumor invasiveness of pulmonary adenocarcinoma and growth in pure GGN:a retrospective analysis[J]. Jpn J Radiol, 2020, 38(8):761-770.
[11] NAIR A, BALDWIN DR, FIELD JK, et al. Measurement methods and algorithms for the management of solid nodules[J]. J Thorac Imaging, 2012, 27(4):230-239.
[12] SCHOLTEN ET, DE JONG PA, DE HOOP B, et al. Towards a close computed tomography monitoring approach for screen detected subsolid pulmonary nodules?[J]. Eur Resp J, 2015, 45(3):765-773.
[13] LEE HW, JIN KN, LEE JK, et al. Long-term follow-up of ground-glass nodules after 5 years of stability[J]. J Thorac Oncol, 2019, 14(8):1370-1377.
[14] MACKIN D, FAVE X, ZHANG L, et al. Harmonizing the pixel size in retrospective computed tomography radiomics studies[J]. PLoS One, 2017, 12(9):e0178524.
[15] HIRAMATSUM, INAGAKI T, INAGAKI T, et al. Pulmonary ground-glass opacity (GGO) lesions-large size and a history of lung cancer are risk factors for growth[J]. J Thorac Oncol, 2008, 3(11):1245-1250.
[16] 赫捷, 李霓, 陈万青, 等.中国肺癌筛查与早诊早治指南(2021, 北京)[J]. 中华肿瘤, 2021, 30(2):81-111.
[17] KOBAYASHI Y, MITSUDOMI T, SAKAO Y, et al. Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules:the differences between nodules with and without growth[J]. Ann Oncol, 2015, 26(1):156-161.
[18] SUGANO M, SHIMIZU K, NAKANO T, et al. Correlation between computed tomography findings and epidermal growth factor receptor and KARS gene mutations in patients with pulmonary adenocarcinoma[J]. Oncol Rep, 2011, 26(5):1205-1211.
[19] TAO G, YIN L, SHI D, et al. Dependence of radiomic features on pixel size affects the diagnostic performance of radiomic signature for the invasiveness of pulmonary ground-glass nodule[J]. Br J Radiol, 2021, 94(1118):20200089.
[20] YANKELEVITZ DF, REEVES AP, KOSTIS WJ, et al. Small pulmonary nodules:volumetrically determined growth rates based on CT evaluation[J]. Radiology, 2000, 217(1):251-256.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
上海市卫健委医学重点专科(ZK2019B01);上海市卫健委青年项目(20194Y0322);复旦大学附属金山医院青年项目(JYQN-JC-202008);上海市胸科医院基础研究院内培育项目(2019YNJCQ02)
{{custom_fund}}