PFKFB3在缺氧条件下调节血管新生的作用

邹蓉, 袁源智

复旦学报(医学版) ›› 2019, Vol. 46 ›› Issue (05) : 691-695.

PDF(1775 KB)
欢迎访问《复旦学报(医学版)》官方网站,今天是 2025年7月26日 星期六 分享到:
PDF(1775 KB)
复旦学报(医学版) ›› 2019, Vol. 46 ›› Issue (05) : 691-695. DOI: 10.3969/j.issn.1672-8467.2019.05.020
综述

PFKFB3在缺氧条件下调节血管新生的作用

  • 邹蓉, 袁源智
作者信息 +

The role of PFKFB3 in regulating angiogenesis under hypoxia

  • ZOU Rong, YUAN Yuan-zhi
Author information +
文章历史 +

摘要

病理性血管新生是癌症和各种缺血性和炎性疾病的标志,尤其是眼部疾病,如年龄相关性黄斑变性(age-related macular degeneration,AMD)、增生性糖尿病视网膜病变(proliferative diabetic retinopathy,PDR)等。目前抗血管新生的药物治疗主要是针对血管内皮生长因子(vascular endothelial growth factor,VEGF)等促血管生成因子,但是长期局部抑制VEGF或与神经元毒性和一些眼部并发症有关,因此需要寻找其他治疗靶点。内皮细胞代谢在血管新生过程中具有重要调节作用,可独立于VEGF等促血管生成分子的调节过程,有望成为抗血管新生的另一个治疗靶点。目前在一些疾病的血管新生过程中发现了糖酵解的重要调节剂6-磷酸果糖-2-激酶/果糖-2,6-双磷酸酶3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3,PFKFB3),本文将介绍PFKFB3的作用,并探讨其作为抗血管新生治疗的内皮细胞代谢靶点的潜力。

Abstract

Pathological angiogenesis is the mark of cancer and various kinds of ischemic and inflammatory diseases,especially in ocular age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR),etc.Now,the drugs used for inhibiting this pathological angiogenesis are mainly targeted at angiogenic factors such as vascular endothelial growth factor (VEGF),etc.However,there exist damage in neurons and some eye complications after long-term local inhibition of VEGF,which drive us to look for other therapies.Recently,studies have demonstrated that endothelial cell metabolism may also play an important role in regulating angiogenesis in a VEGF-independent way,which makes it another possible new target for antiangiogenic therapy.In angiogenesis of some diseases,the roles of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) was found as the important regulator of glycolysis.This review summarizes the roles of PFKFB3,and discusses its potential as a new antiangiogenic target as well as provide researchers with a clear and innovative thought.

关键词

PFKFB3 / 血管内皮细胞 / 血管新生 / 糖酵解 / 缺氧

Key words

PFKFB3 / endothelial cell / angiogenesis / glycolysis / hypoxia

引用本文

导出引用
邹蓉, 袁源智. PFKFB3在缺氧条件下调节血管新生的作用[J]. 复旦学报(医学版), 2019, 46(05): 691-695 https://doi.org/10.3969/j.issn.1672-8467.2019.05.020
ZOU Rong, YUAN Yuan-zhi. The role of PFKFB3 in regulating angiogenesis under hypoxia[J]. Fudan University Journal of Medical Sciences, 2019, 46(05): 691-695 https://doi.org/10.3969/j.issn.1672-8467.2019.05.020
中图分类号: R364.7   

参考文献

[1] FLAXMAN SR,BOURNE RRA,RESNIKOFF S,et al.Global causes of blindness and distance vision impairment 1990-2020:a systematic review and meta-analysis[J].Lancet Glob Health,2017,5(12):e1221-e1234.
[2] FALAVARJANI KG,NGUYEN QD.Adverse events and complications associated with intravitreal injection of anti-VEGF agents:a review of literature[J].Eye (Lond),2013,27(7):787-794.
[3] NUZZI R,TRIDICO F.Local and systemic complications after intravitreal administration of anti-vascular endothelial growth factor agents in the treatment of different ocular diseases:a five-year retrospective study[J].Semin Ophthalmol,2015,30(2):129-135.
[4] MACKLIN PS,MCAULIFFE J,PUGH CW,et al.Hypoxia and HIF pathway in cancer and the placenta[J].Placenta,2017,56:8-13.
[5] DEVRAJ G,BEERLAGE C,BRUNE B,et al.Hypoxia and HIF-1 activation in bacterial infections[J].Microbes Infec,2017,19(3):144-156.
[6] FLEISCHER M,KESSLER R,KLAMMER A,et al.LOH on 10p14-p15 targets the PFKFB3 gene locus in human glioblastomas[J].Genes Chromosomes Cancer,2011,50(12):1010-1020.
[7] KESSLER R,ESCHRICH K.Splice isoforms of ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in human brain[J].Brain Res Mol Brain Res,2001,87(2):190-195.
[8] SHI L,PAN H,LIU Z,et al.Roles of PFKFB3 in cancer[J].Signal Transduct Target Ther,2017,2:17044.
[9] HUE L,RIDER MH.Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues[J].Biochem J,1987,245(2):313-324.
[10] OKAR DA,MANZANO A,NAVARRO-SABATE A,et al.PFK-2/FBPase-2:maker and breaker of the essential biofactor fructose-2,6-bisphosphate[J].Trends Biochem Sci,2001,26(1):30-35.
[11] EL-MAGHRABI MR,PILKIS SJ.Rat liver 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase:a review of relationships between the two activities of the enzyme[J].J Cell Biochem,1984,26(1):1-17.
[12] BANDO H,ATSUMI T,NISHIO T,et al.Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer[J].Clin Cancer Res,2005,11(16):5784-5792.
[13] FUKASAWA M,TSUCHIYA T,TAKAYAMA E,et al.Identification and characterization of the hypoxia-responsive element of the human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene[J].J Biochem,2004,136(3):273-277.
[14] OBACH M,NAVARRO-SABATE A,CARO J,et al.6-Phosphofructo-2-kinase (PFKFB3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia[J].J Biol Chem,2004,279(51):53562-53570.
[15] CANTELMO AR,CONRADI LC,BRAJIC A,et al.Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization,impairs metastasis,and improves chemotherapy[J].Cancer Cell,2016,30(6):968-985.
[16] LI X L,LIU J,QIAN L,et al.Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy[J].Mol Cell Biochem,2018,445(1-2):123-134.
[17] MARIN-HERNANDEZ A,GALLARDO-PEREZ JC,RALPH SJ,et al.HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms[J].Mini Rev Med Chem,2009,9(9):1084-1101.
[18] NOVELLASDEMUNT L,BULTOT L,MANZANO A,et al.PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli[J].Biochem J,2013,452(3):531-543.
[19] RODRIGUEZ-GARCIA A,SAMSO P,FONTOVA P,et al.TGF-beta1 targets Smad,p38 MAPK,and PI3K/Akt signaling pathways to induce PFKFB3 gene expression and glycolysis in glioblastoma cells[J].FEBS J,2017,284(20):3437-3454.
[20] NOVELLASDEMUNT L,OBACH M,MILLAN-ARINO L,et al.Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3(PFKFB3) in breast cancer cells[J].Biochem J,2012,442(2):345-356.
[21] SHAW G,KAMEN R.A conserved AU sequence from the 3'untranslated region of GM-CSF mRNA mediates selective mRNA degradation[J].Cell,1986,46(5):659-667.
[22] GE X,LYU P,CAO Z,et al.Overexpression of miR-206 suppresses glycolysis,proliferation and migration in breast cancer cells via PFKFB3 targeting[J].Biochem Biophys Res Commun,2015,463(4):1115-1121.
[23] DU JY,WANG LF,WANG Q,et al.miR-26b inhibits proliferation,migration,invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells[J].Oncol Rep,2015,33(4):1890-1898.
[24] WU Y,ZHANG MH,XUE Y,et al.Effect of microRNA-26a on vascular endothelial cell injury caused by lower extremity ischemia-reperfusion injury through the AMPK pathway by targeting PFKFB3[J].J Cell Physiol,2019,234(3):2916-2928.
[25] IMBERT-FERNANDEZ Y,CLEM BF,O'NEAL J,et al.Estradiol stimulates glucose metabolism via 6-phosphofructo-2-kinase (PFKFB3)[J].J Biol Chem,2014,289(13):9440-9448.
[26] RIERA L,MANZANO A,NAVARRO-SABATE A,et al.Insulin induces PFKFB3 gene expression in HT29 human colon adenocarcinoma cells[J].Biochem Biophys Acta,2002,1589(2):89-92.
[27] YALCIN A,CLEM BF,SIMMONS A,et al.Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases[J].J Biol Chem,2009,284(36):24223-24232.
[28] ALMEIDA A,BOLANOS JP,MONCADA S.E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation[J].Proc Nati Acad Sci U S A,2010,107(2):738-741.
[29] DE BOCK K,GEORGIADOU M,SCHOORS S,et al.Role of PFKFB3-driven glycolysis in vessel sprouting[J].Cell,2013,154(3):651-663.
[30] BIERHANSL L,CONRADI L C,TREPS L,et al.Central role of metabolism in endothelial cell function and vascular disease[J].Physiology,2017,32(2):126-140.
[31] EELEN G,DE ZEEUW P,TREPS L,et al.Endothelial cell metabolism[J].Physiol Rev,2018,98(1):3-58.
[32] PAIK JY,JUNG KH,LEE JH,et al.Reactive oxygen species-driven HIF1alpha triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension[J].Nucl Med Biol,2017,45:8-14.
[33] WRIGHTON KH.Morphogenesis:fuelling vessel sprouting[J].Nat Rev Mol Cell Biol,2013,14(9):544.
[34] FITZGERALD G,SORO-ARNAIZ I,DE BOCK K.The warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer[J].Front Cell Dev Biol,2018,6:100.
[35] SCHOORS S,DE BOCK K,CANTELMO AR,et al.Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis[J].Cell Metab,2014,19(1):37-48.
[36] SAMANTARAY S,DAS A,MATZELLE DC,et al.Administration of low dose estrogen attenuates persistent inflammation,promotes angiogenesis,and improves locomotor function following chronic spinal cord injury in rats[J].J Neurochem,2016,137(4):604-617.
[37] JIANG CF,LI DM,SHI ZM,et al.Estrogen regulates miRNA expression:implication of estrogen receptor and miR-124/AKT2 in tumor growth and angiogenesis[J].Oncotarget,2016,7(24):36940-36955.
[38] TRENTI A,TEDESCO S,BOSCARO C,et al.The glycolytic enzyme PFKFB3 is involved in estrogen-mediated angiogenesis via GPER1[J].J Pharmacol Exp Ther,2017,361(3):398-407.

基金

国家自然科学基金(81470637,81873680,81600735)
PDF(1775 KB)

969

Accesses

0

Citation

Detail

段落导航
相关文章

/