基于常规引物靶向结核分枝杆菌Ⅱ型分枝杆菌散在重复单位的恒温扩增

吴康, 屈蓉, 王刚, 薛清华, 吕建新, Douglas B. Lowrie, 范小勇

复旦学报(医学版) ›› 2020, Vol. 47 ›› Issue (06) : 799-808.

PDF(6717 KB)
欢迎访问《复旦学报(医学版)》官方网站,今天是 2025年5月16日 星期五 分享到:
PDF(6717 KB)
复旦学报(医学版) ›› 2020, Vol. 47 ›› Issue (06) : 799-808. DOI: 10.3969/j.issn.1672-8467.2020.06.001
论著

基于常规引物靶向结核分枝杆菌Ⅱ型分枝杆菌散在重复单位的恒温扩增

  • 吴康1, 屈蓉1,2, 王刚1, 薛清华1, 吕建新2, Douglas B. Lowrie1, 范小勇1,2
作者信息 +

Isothermal amplification of type Ⅱ mycobacterial interspersed repetitive units of Mycobacterium tuberculosis using ordinary primers

  • WU Kang1, QU Rong1,2, WANG Gang1, XUE Qing-hua1, LYU Jian-xin2, Douglas B. Lowrie1, FAN Xiao-yong1,2
Author information +
文章历史 +

摘要

目的 探讨基于特异常规引物(即引物不需折叠成特定二级结构)靶向恒温扩增重复DNA序列的方法,并测试其检测结核分枝杆菌(Mycobacterium tuberculosisMtb)的可能性。方法 以合成的重复DNA或以抽提的细菌基因组DNA为模板,用Bst 2.0 WarmStart DNA聚合酶进行恒温扩增。用琼脂糖凝胶电泳检测扩增结果。结果 合成的重复DNA可用其特异常规引物进行恒温扩增。进一步,Mtb H37Rv Ⅱ型分枝杆菌散在重复单位(mycobacterial interspersed repetitive units,MIRUs)可用其特异常规引物对(即Ⅱ_MIRU-F和Ⅱ_MIRU-R)或单引物(即Ⅱ_MIRU-F)进行恒温扩增。相比于非分枝杆菌菌株、非结核分枝杆菌菌株、Mtb复合物菌株和临床分离株,Ⅱ_MIRU-F能够高特异地扩增Mtb菌株。Ⅱ_MIRU-F针对Mtb H37Rv基因组DNA的检测下限较高,且不能特异地区分Mtb阴性痰液样本和Mtb阳性痰液样本。结论 常规引物可恒温扩增重复DNA序列(包括Mtb Ⅱ型MIRUs);Mtb Ⅱ型MIRUs特异引物Ⅱ_MIRU-F不适合用于痰液样本的检测。

Abstract

Objective To investigate the isothermal amplification approach targeting repetitive DNA sequences using ordinary primers being not able to fold into designated secondary structures.Then the novel approach was utilized to detect Mycobacterium tuberculosis (Mtb). Methods Isothermal amplification was applied using synthesized repetitive DNA sequence or extracted bacteria genomic DNA as templates,and using Bst 2.0 WarmStart DNA as DNA polymerase.The DNA products were detected via agarose gel electrophoresis. Results Synthesized repetitive DNA sequence could be isothermally amplified using its sequence-specific ordinary primers.Subsequently,primers (i.e.Ⅱ_MIRU-F/Ⅱ_MIRU-R) targeting type Ⅱ mycobacterial interspersed repetitive units (MIRUs) of Mtb H37Rv were designed.Primer pair Ⅱ_MIRU-F/Ⅱ_MIRU-R or single primer Ⅱ_MIRU-F could amplify Mtb H37Rv genomic DNA isothermally.Ⅱ_MIRU-F could amplify Mtb with high specificity,after comparing its performances among non-mycobacteria strains,non-tuberculous mycobacteria strains,Mtb complex strains,and Mtb clinical isolates.Ⅱ_MIRU-F had high limit of detection against Mtb H37Rv genomic DNA,and couldn't specifically distinguish Mtb-positive sputum samples and Mtb-negative sputum samples. Conclusion Repetitive DNA sequences (including Mtb type Ⅱ MIRUs) could be isothermally amplified;Ⅱ_MIRU-F (specific to Mtb type Ⅱ MIRUs) does not suit to be utilized to test sputum samples.

关键词

恒温扩增 / 重复DNA / 结核分枝杆菌 / Ⅱ型分枝杆菌散在重复单位

Key words

isothermal amplification / repetitive DNA / Mycobacterium tuberculosis / type Ⅱ mycobacterial interspersed repetitive units

引用本文

导出引用
吴康, 屈蓉, 王刚, 薛清华, 吕建新, Douglas B. Lowrie, 范小勇. 基于常规引物靶向结核分枝杆菌Ⅱ型分枝杆菌散在重复单位的恒温扩增[J]. 复旦学报(医学版), 2020, 47(06): 799-808 https://doi.org/10.3969/j.issn.1672-8467.2020.06.001
WU Kang, QU Rong, WANG Gang, XUE Qing-hua, LYU Jian-xin, Douglas B. Lowrie, FAN Xiao-yong. Isothermal amplification of type Ⅱ mycobacterial interspersed repetitive units of Mycobacterium tuberculosis using ordinary primers[J]. Fudan University Journal of Medical Sciences, 2020, 47(06): 799-808 https://doi.org/10.3969/j.issn.1672-8467.2020.06.001
中图分类号: R378.91+1   

参考文献

[1] WHO.Global tuberculosis report 2019[EB/OL].(2019-10-17)[2020-01-15].https://www.who.int/tb/publications/global_report/en/.
[2] WHO.The end TB strategy[EB/OL].(2015-03-16)[2020-01-15].https://www.who.int/tb/post2015_strategy/en/.
[3] PAI M,NICOL MP,BOEHME CC.Tuberculosis diagnostics:state of the art and future directions[J].Microbiol Spectr,2016,4(5).doi:10.1128/microbiolspec.TBTB2-0019-2016.
[4] PAI M,BEHR M. Latent Mycobacterium tuberculosis infection and interferon-gamma release assays[J].Microbiol Spectr,2016,4(5):doi:10.1128/microbiolspec.TBTB2-0023-2016.
[5] BROGER T,SOSSEN B,DU TE,et al.Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV:a diagnostic accuracy study[J].Lancet Infect Dis,2019,19(8):852-861.
[6] GARCIA-BASTEIRO AL,DINARDO A,SAAVEDRA B,et al.Point of care diagnostics for tuberculosis[J].Pulmonology,2018,24(2):73-85.
[7] GRAY CM,KATAMBA A,NARANG P,et al.Feasibility and operational performance of tuberculosis detection by loop-mediated isothermal amplification platform in decentralized settings:results from a multicenter study[J].J Clin Microbiol,2016,54(8):1984-1991.
[8] LIU D,ZHAO B,OU X,et al.A novel isothermal amplification-based method to detect Mycobacterium tuberculosis complex[J].J Microbiol Methods,2018,145:59-65.
[9] FANG R,LI X,HU L,et al.Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens[J].J Clin Microbiol,2009,47(3):845-847.
[10] XU G,HU L,ZHONG H,et al.Cross priming amplification:mechanism and optimization for isothermal DNA amplification[J].Sci Rep,2012,2:246.
[11] LIU W,DONG D,YANG Z,et al.Polymerase spiral reaction (PSR):a novel isothermal nucleic acid amplification method[J].Sci Rep,2015,5:12723.
[12] LIU W,ZOU D,HE X,et al.Development and application of a rapid Mycobacterium tuberculosis detection technique using polymerase spiral reaction[J].Sci Rep,2018,8:3003.
[13] QI H,YUE S,BI S,et al.Isothermal exponential amplification techniques:from basic principles to applications in electrochemical biosensors[J].Biosens Bioelectron,2018,110:207-217.
[14] BELISLE JT,SONNENBERG MG.Isolation of genomic DNA from mycobacteria[J].Methods Mol Biol,1998,101:31-44.
[15] SUPPLY P,MAZARS E,LESJEAN S,et al.Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome[J].Mol Microbiol,2000,36(3):762-771.
[16] SUPPLY P,MAGDALENA J,HIMPENS S,et al.Identification of novel intergenic repetitive units in a mycobacterial two-component system operon[J].Mol Microbiol,1997,26(5):991-1003.
[17] ZHAO Y,CHEN F,LI Q,et al.Isothermal amplification of nucleic acids[J].Chem Rev,2015,115(22):12491-12545.
[18] COMPTON J.Nucleic acid sequence-based amplification[J].Nature,1991,350(6313):91-92.
[19] VINCENT M,XU Y,KONG H.Helicase-dependent isothermal DNA amplification[J].EMBO Rep,2004,5(8):795-800.
[20] NOTOMI T,OKAYAMA H,MASUBUCHI H,et al.Loop-mediated isothermal amplification of DNA[J].Nucleic Acids Res,2000,28(12):E63.
[21] WALKER GT,FRAISER MS,SCHRAM JL,et al.Strand displacement amplification——an isothermal,in vitro DNA amplification technique[J].Nucleic Acids Res,1992,20(7):1691-1696.
[22] PIEPENBURG O,WILLIAMS CH,STEMPLE DL,et al.DNA detection using recombination proteins[J].PLoS Biol,2006,4(7):e204.

基金

国家重点研发计划(2018YFD0500900);国家科技重大专项(2018ZX10731301,2018ZX10302301);上海市科委医学引导项目(18411970700)
PDF(6717 KB)

720

Accesses

0

Citation

Detail

段落导航
相关文章

/