非编码RNA与血脂代谢的研究进展

林振浩, 唐敏娜, 胡嘉禄, 颜彦

复旦学报(医学版) ›› 2020, Vol. 47 ›› Issue (01) : 122-127.

PDF(671 KB)
欢迎访问《复旦学报(医学版)》官方网站,今天是 2025年5月14日 星期三 分享到:
PDF(671 KB)
复旦学报(医学版) ›› 2020, Vol. 47 ›› Issue (01) : 122-127. DOI: 10.3969/j.issn.1672-8467.2020.01.021
综述

非编码RNA与血脂代谢的研究进展

  • 林振浩, 唐敏娜, 胡嘉禄, 颜彦
作者信息 +

Research progress on non-coding RNA and blood lipid metabolism

  • LIN Zhen-hao, TANGMin-na, HU Jia-lu, YAN Yan
Author information +
文章历史 +

摘要

冠心病的主要病理学基础是动脉粥样硬化,其发生发展是多因素、多步骤的,也是遗传和环境因素交互作用的结果。除年龄、性别、肥胖、吸烟、高血压、糖尿病等因素外,血脂代谢异常是促进动脉粥样硬化发生发展的重要因素。越来越多的证据表明非编码RNA参与调控过程,在血脂代谢和动脉粥样硬化的形成过程中发挥重要作用,特别是使用小干扰RNA(small interfering RNA,siRNA)从RNA水平调控血脂的RNA干扰(RNA interfering,RNAi)技术,不仅在动物实验上获得了明显的降脂效果,而且在临床试验上也取得了明显疗效。本文从非编码RNA的水平总结血脂代谢的影响因素及相关干预手段。

Abstract

Atherosclerosis is the main pathological basis of coronary heart disease.It is a complicated progress involved many factors,and the result of the interaction between genetic and environmental factors.In addition to factors such as age, gender, obesity,smoking,hypertension and diabetes,abnormal lipid metabolism is a particularly important factor in promoting the development of atherosclerosis.Nowadays,there is increasing evidence that non-coding RNA is involved in the regulation process and plays an important role in the lipid metabolism and formation of atherosclerosis.Especially,the RNA interference (RNAi) using small interfering RNA (siRNA) has achieved significant lipid-lowering effects not only in animal experiments,but also in clinical trials.This article reviewed influencing factors of lipid metabolism and related interventions on non-coding RNA level.

引用本文

导出引用
林振浩, 唐敏娜, 胡嘉禄, 颜彦. 非编码RNA与血脂代谢的研究进展[J]. 复旦学报(医学版), 2020, 47(01): 122-127 https://doi.org/10.3969/j.issn.1672-8467.2020.01.021
LIN Zhen-hao, TANGMin-na, HU Jia-lu, YAN Yan. Research progress on non-coding RNA and blood lipid metabolism[J]. Fudan University Journal of Medical Sciences, 2020, 47(01): 122-127 https://doi.org/10.3969/j.issn.1672-8467.2020.01.021
中图分类号: R543.5   

参考文献

[1] ROSS R.Atherosclerosis--an inflammatory disease[J].N Engl J Med,1999,340(2):115-126.
[2] DIEHL AG,BOYLE AP.Deciphering ENCODE[J].Trends Genet,2016,32(4):238-249.
[3] KHYZHA N,ALIZADA A,WILSON MD,et al.Epigenetics of atherosclerosis:emerging mechanisms and methods[J].Trends Mol Med,2017,23(4):332-347.
[4] FEINBERG MW,MOORE KJ.MicroRNA regulation of atherosclerosis[J].Circ Res,2016,118(4):703-720.
[5] TADIN-STRAPPS M,PETERSON LB,CUMISKEY AM,et al.SiRNA-induced liver apoB knockdown lowers serum LDL-cholesterol in a mouse modelwith human-like serum lipids[J].J Lipid Res,2011,52(6):1084-1097.
[6] JIAN L,JIAN D,CHEN Q,et al.Long noncoding RNAs in atherosclerosis[J].J AtherosclerThromb,2016,23(4):376-384.
[7] HOLDT LM,STAHRINGER A,SASS K,et al.Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J].Nat Commun,2016,7:12429.
[8] AMBROS V.The functions of animal microRNAs[J].Nature,2004,431(7006):350-355.
[9] BARTEL DP.MicroRNAs:target recognition and regulatory functions[J].Cell,2009,136(2):215-233.
[10] GUO H,INGOLIA NT,WEISSMAN JS,et al.Mammalian microRNAs predominantly act to decrease target mRNA levels[J].Nature,2010,466(7308):835-840.
[11] FRIEDMAN RC,FARH KK,BURGE CB,et al.Most mammalian mRNAs are conserved targets of microRNAs[J].Genome Res,2009,19(1):92-105.
[12] ROOIJ EVAN,PURCELL AL,LEVIN AA.Developing microRNA therapeutics[J].Circ Res,2012,110(3):496-507.
[13] GOEDEKE L,WAGSCHAL A,FERNANDEZ-HERNANDO C,et al.MiRNA regulation of LDL-cholesterol metabolism[J].Biochim Biophys Acta,2016,1861(12 Pt B):2047-2052.
[14] GOEDEKE L,ROTLLAN N,CANFRAN-DUQUE A,et al.MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels[J].Nat Med,2015,21(11):1280-1289.
[15] JIANG H,ZHANG J,Du Y,et al.MicroRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator[J].Atherosclerosis,2015,243(2):523-532.
[16] COHEN JC,BOERWINKLE E,MOSLEY TJ,et al.Sequence variations in PCSK9,low LDL,and protection against coronary heart disease[J].N Engl J Med,2006,354(12):1264-1272.
[17] ZAMBRANO T,HIRATA MH,CERDA A,et al.Impact of 3'UTR genetic variants in PCSK9 and LDLR genes on plasma lipid traits and response to atorvastatin in Brazilian subjects:a pilot study[J].Int J Clin Exp Med,2015,8(4):5978-5988.
[18] ALVAREZ ML,KHOSROHEIDARI M,EDDY E,et al.MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis[J].Atherosclerosis,2015,242(2):595-604.
[19] XU Y,ZALZALA M,XU J,et al.A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism[J].Nat Commun,2015,6:7466.
[20] SOH J,IQBAL J,QUEIROZ J,et al.MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion[J].Nat Med,2013,19(7):892-900.
[21] ESAU C,DAVIS S,MURRAY SF,et al.MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metab,2006,3(2):87-98.
[22] PETERSEN CP,BORDELEAU ME,PELLETIER J,et al.Short RNAs repress translation after initiation in mammalian cells[J].Mol Cell,2006,21(4):533-542.
[23] FITZGERALD K,WHITE S,BORODOVSKY A,et al.A highly durable RNAi therapeutic inhibitor of PCSK9[J].N Engl J Med,2017,376(1):41-51.
[24] RAY KK,LANDMESSER U,LEITER LA,et al.Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol[J].N Engl J Med,2017,376(15):1430-1440.
[25] RAMACHANDRAN PV,IGNACIMUTHU S.RNA interference--a silent but an efficient therapeutic tool[J].Appl Biochem Biotechnol,2013,169(6):1774-1789.
[26] WANG KC,CHANG HY.Molecular mechanisms of long noncoding RNAs[J].Mol Cell,2011,43(6):904-914.
[27] KORNFELD JW,BRUNING JC.Regulation of metabolism by long,non-coding RNAs[J].Front Genet,2014,5:57.
[28] UCHIDA S,DIMMELER S.Long noncoding RNAs in cardiovascular diseases[J].Circ Res,2015,116(4):737-750.
[29] ISHII N,OZAKI K,SATO H,et al.Identification of a novel non-coding RNA,MIAT,that confers risk of myocardial infarction[J].J Hum Genet,2006,51(12):1087-1099.
[30] KUMARSWAMY R,BAUTERS C,VOLKMANN I,et al.Circulating long noncoding RNA,LIPCAR,predicts survival in patients with heart failure[J].Circ Res,2014,114(10):1569-1575.
[31] VAUSORT M,WAGNER DR,DEVAUX Y.Long noncoding RNAs in patients with acute myocardial infarction[J].Circ Res,2014,115(7):668-677.
[32] LI P,RUAN X,YANG L,et al.A liver-enriched long non-coding RNA,lncLSTR,regulates systemic lipid metabolism in mice[J].Cell Metab,2015,21(3):455-467.
[33] HALLEY P,KADAKKUZHA BM,FAGHIHI MA,et al.Regulation of the apolipoprotein gene cluster by a long noncoding RNA[J].Cell Rep,2014,6(1):222-230.
[34] HU YW,YANG JY,MA X,et al.A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis[J].J Lipid Res,2014,55(4):681-697.
[35] SALLAM T,JONES MC,GILLILAND T,et al.Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis[J].Nature,2016,534(7605):124-128.
[36] TONTONOZ P,WU X,JONESM,et al.Long noncoding RNA facilitated gene therapy reduces atherosclerosis in a murine model of familial hypercholesterolemia[J].Circulation,2017,136(8):776-778.
[37] ZHANG Z,SALISBURY D,SALLAM T.Long non-coding RNAs in atherosclerosis:JACC review topic of the week[J].J Am Coll Cardiol,2018,72(19):2380-2390.
[38] HANSEN TB,VENO MT,DAMGAARD CK,et al.Comparison of circular RNA prediction tools[J].Nucleic Acids Res,2016,44(6):e58.
[39] ABDELMOHSEN K,PANDA AC,MUNK R,et al.Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J].RNA Biol,2017,14(3):361-369.
[40] JAKOBI T,CZAJA-HASSE LF,REINHARDT R,et al.Profiling and validation of thecircular RNA repertoire in adult murine hearts[J].Genomics Proteomics Bioinformatics,2016,14(4):216-223.
[41] ZOU M,HUANG C,LI X,et al.Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection[J].Oncotarget,2017,8(47):81825-81837.
[42] SALGADO-SOMOZA A,ZHANG L,VAUSORT M,et al.The circular RNA MICRA for risk stratification after myocardial infarction[J].Int J Cardiol Heart Vasc,2017,17:33-36.
[43] VAUSORT M,SALGADO-SOMOZA A,ZHANG L,et al.Myocardial infarction-associated circular RNA predicting left ventricular dysfunction[J].J Am Coll Cardiol,2016,68(11):1247-1248.
[44] GENG HH,LI R,SU YM,et al.The circular RNA CDR1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression[J].PLoS One,2016,11(3):e151753.
[45] ZHAO Z,LI X,GAO C,et al.Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease[J].Sci Rep,2017,7:39918.

基金

国家自然科学基金(81700441)
PDF(671 KB)

422

Accesses

0

Citation

Detail

段落导航
相关文章

/