互联网联合人工智能在妇科肿瘤全程管理中的应用展望

钱智敏, 姜桦

复旦学报(医学版) ›› 2019, Vol. 46 ›› Issue (04) : 556-561.

PDF(895 KB)
欢迎访问《复旦学报(医学版)》官方网站,今天是 2025年5月7日 星期三 分享到:
PDF(895 KB)
复旦学报(医学版) ›› 2019, Vol. 46 ›› Issue (04) : 556-561. DOI: 10.3969/j.issn.1672-8467.2019.04.022
综述

互联网联合人工智能在妇科肿瘤全程管理中的应用展望

  • 钱智敏, 姜桦
作者信息 +

The practice prospective of the internet combining with artificial intelligence in the area of gynecologic tumor management

  • QIAN Zhi-min, JIANG Hua
Author information +
文章历史 +

摘要

在人工智能与互联网迅捷发展的大背景之下,"互联网+"的概念逐渐深入人心,以人工智能为基础的智慧医疗模式正改变着人们的生活。"互联网+医疗"即指互联网加上传统医疗,是将互联网和传统医疗行业进行深度融合,而非简单叠加,从而创造新的发展模式。传统的妇科肿瘤管理存在着患者分布不均、重复检查、管理周期长等问题,这些问题在"互联网+"时代可能得到解决。本文重点综述在"互联网+"时代,如何利用相关技术对妇科肿瘤疾病进行三级预防,以及需要注意的信息安全问题、技术瓶颈和质量控制问题。

Abstract

With the rapid development of the internet and artificial intelligence,the concept of "internet +" becomes more and more common,and the artificial intelligence is also changing our lives."Internet + medicine" means the internet plus traditional medicine.This is not the simple addition of the two concepts,but means using the internet technology,combing the internet and traditional medicine together.There are many problems existing in traditional gynecologic tumor managements,including uneven distribution of the patients,repeated tests and long management cycles.In "internet +"era,these problems may be solved.In this review,we focused on how to use related technology to prevent genecologic tumors in three levels,and what we need to know on information safety,technical bottleneck and quality control problems.

引用本文

导出引用
钱智敏, 姜桦. 互联网联合人工智能在妇科肿瘤全程管理中的应用展望[J]. 复旦学报(医学版), 2019, 46(04): 556-561 https://doi.org/10.3969/j.issn.1672-8467.2019.04.022
QIAN Zhi-min, JIANG Hua. The practice prospective of the internet combining with artificial intelligence in the area of gynecologic tumor management[J]. Fudan University Journal of Medical Sciences, 2019, 46(04): 556-561 https://doi.org/10.3969/j.issn.1672-8467.2019.04.022
中图分类号: R737.3    F49   

参考文献

[1] 朱劲松.互联网+医疗模式:内涵与系统架构[J].中国医院管理, 2016, 36(1):38-40.
[2] 于秀珍, 邢冬婕.精准预约存在的问题与改进[J].护士进修杂志, 2017, 32(20):1857-1858.
[3] 李开复, 王咏刚.《人工智能》第三章(节选)[J].汕头大学学报(人文社会科学版), 2017, 33(5):127-136.
[4] KAHNG J, KIM E, KIM H.Development of a cervical cancer progress prediction tool for human papillomavirus-positive Koreans:A support vector machine-based approach[J].J Int Med Res, 2015, 43(4):518-525.
[5] CHANKONG T, THEERA-UMPON N, AUEPHANWIRIYAKUL S.Automatic cervical cell segmentation and classification in Pap smears[J].Comput Meth Prog Bio, 2014, 113(2):539-556.
[6] ZHAO M, WU A, SONG J.Automatic screening of cervical cells using block image processing[J].BioMed Eng OnLine, 2016, 15:14.
[7] BOUAZIZ J, MASHIACH R, COHEN S.How artificial intelligence can improve our understanding of the genes associated with endometriosis:natural language processing of the pubmed database[J].Biomed Res Int, 2018, 2018:6217812.
[8] NATIONAL CANCER INSTITUTE.Cancer stat facts:uterine cancer[R/OL].[2018-08-15].https://seer.cancer.org/statfacts/html/corp.html.
[9] PERGIALIOTIS V, POULIAKIS A, PARTHENIS C.The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women[J].Public Health, 2018, 164:1-6.
[10] GUPTA P, GUPTA, N, DEY P.Artificial neural network for cytodiagnosis of endometrial carcinoma[J].Anal Quant Cytopathol Histopathol, 2016, 38(4):249-254.
[11] DAI W,DOYLE J,LIANG X.SCAN:structure correcting adversarial network for organ segmentation in chest x-ray[R/OL].(2017-04-10)[2018-08-15].https://petuum.com/wp-content/uploads/2019/01/SCAN_Structure_Correcting_Adversarial_Network_for_Organ_Segmentation_in_Chest_X-rays.pdf.
[12] JING B,XIE P,XING EP.On the automatic generation of medical imaging reports[R/OL].(2018-07-20)[2018-08-15].https://petuum.com/wp-content/uploads/2019/01/Automatic_Generation_Medical_Imaging_Reports.pdf.
[13] 严丽梅.2017肿瘤生物治疗最新进展暨"卵巢癌规范化、个体化、精准治疗高峰论坛"纪要[J].中国实用妇科与产科杂志, 2017, 33(8):874-880.
[14] 董立新, 李新, 杨森.基于DW-MRI纹理分析建立预测宫颈鳞状细胞癌放化疗敏感性模型的研究[J].医学综述, 2018, 24(11):2270-2274.
[15] WILLIAMS P D, CHEON S, HAVALESHKO D M.Concordant gene expression signatures predict clinical outcomes of cancer patients undergoing systemic therapy[J].Cancer Res, 2009, 69(21):8302-8309.
[16] 孟群.中国互联网医疗的发展现状与思考[J].中国卫生信息管理杂志, 2016, 13(4):356-363.
[17] OBRZUT B.Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods[J].BMC Cancer, 2017, 17(1):840.
[18] BOGANI G.Artificial intelligence estimates the impact of human papillomavirus types in influencing the risk of cervical dysplasia recurrence:progress toward a more personalized approach[J].Eur J Cancer Prev, 2018, 28(2):81-86.
[19] BOGANI G.Artificial intelligence weights the importance of factors predicting complete cytoreduction at secondary cytoreductive surgery for recurrent ovarian cancer[J].J Gynecol Oncol, 2018, 29(5):e66.
[20] 陈梅.人工智能助力医疗的机遇与挑战[J].中国信息医学, 2018, 13(1):16-18.
PDF(895 KB)

374

Accesses

0

Citation

Detail

段落导航
相关文章

/