文章快速检索     高级检索
   复旦学报(医学版)  2020, Vol. 47 Issue (3): 448-455      DOI: 10.3969/j.issn.1672-8467.2020.03.022
0
Contents            PDF            Abstract             Full text             Fig/Tab
干细胞稳态和动员的自主神经调控研究进展
陈小燕1  (综述), 李清梅5 , 季诗梦1 , 程婷婷1 , 周建1,2 , 陈翠翠1,2 , 苏枭5 , 宋元林1,2,3,4  (审校)     
1. 复旦大学附属中山医院呼吸与危重症科 上海 200032;
2. 上海市呼吸病研究所 上海 200032;
3. 复旦大学附属中山医院青浦分院呼吸科 上海 201700;
4. 国家老年疾病临床医学研究中心(华山) 上海 200040;
5. 中国科学院上海巴斯德研究所 上海 200032
摘要:干细胞是一类具有自我更新和多向分化潜能的细胞,参与机体的稳态维持和组织修复过程。干细胞的动员、归巢和组织定植受多种因素调控,尤其是自主神经系统调控。自主神经系统是一个复杂而精确的调控网络,其包括交感神经和副交感神经。本文就交感神经、副交感神经、神经肽对干细胞调控机制及其临床意义进行综述。
关键词干细胞    自主神经    肾上腺素    乙酰胆碱    
The autonomic nervous regulation of stem cell homeostasis and mobilization
CHEN Xiao-yan1 , LI Qing-mei5 , JI Shi-meng1 , CHENG Ting-ting1 , ZHOU Jian1,2 , CHEN Cui-cui1,2 , SU Xiao5 , SONG Yuan-lin1,2,3,4     
1. Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
2. Shanghai Respiratory Research Institute, Shanghai 200032, China;
3. Department of Pulmonary Medicine, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai 201700, China;
4. National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
5. Institute of Pasteur, Chinese Academy of Sciences, Shanghai 200032, China
Abstract: Stem cells possess self-renewal capacity and multi-directional differentiation potential. It participates in maintaining homeostasis and tissue repair process. The mobilization, homing, and tissueresident of stem cells are regulated by multiple factors, especially the autonomic nervous system. Autonomic nervous system is a complex and precisely tuned network, which include the sympathetic nerve and parasympathetic nerve.This review summarizes the effect of sympathetic, parasympathetic nerve, and neuropeptide on stem cells and its clinical value.
Key words: stem cell    autonomic nervous    epinephrine    acetylcholine    

干细胞是一类具有自我不断更新和多向分化潜能的细胞,它们在维持机体稳态和组织修复过程中起着重要作用。研究发现干细胞自我更新潜能的维持依赖于干细胞龛。干细胞龛即干细胞周围微环境,包括各种干细胞毗邻的细胞、基质和黏附分子。他们为干细胞提供了一个维持静止状态的场所,在受干细胞动员分化相关信号刺激后,调控干细胞的激活、增殖、分化和迁移等活动以适应机体需求[1-2]。其中参与调控干细胞龛稳态的主要因素就是自主神经系统。

自主神经系统是一个复杂而精确的系统, 通过中枢的远程调控调节机体的各种反应。自主神经系统包括交感神经系统(sympathetic nervous system, SNS)和副交感神经系统(parasympathetic nervous system, PNS)[3]。但小部分SNS在出生后的一些特殊部位如骨膜和唾液腺体,其神经纤维性质由去甲肾上腺素能转换成胆碱能纤维成分[3-5]。自主神经纤维及其受体广泛分布于机体的脏器和组织中,调控着机体重要的生理功能,如图 1所示。

SNS:Sympathetic nerve system; PSNS:Parasympathetic nerve system; EPI:Epinephrine; NE:Norepinephrine; DA:Dopamine; ACh: Acetylcholine; HSPCs:Hematopoietic stem and progenitor cells; MSCs:Mesenchymal stem and progenitor cells; ESC:Embryonic stem cells; SSC: somatic stem cells. 图 1 自主神经对干细胞的调控 Fig 1 The autonomic nervous regulation of stem cell

交感(去甲肾上腺素能)神经系统对干细胞的调控  交感(去甲肾上腺素能)神经由脊髓胸腰段侧角内发出神经纤维到交感神经节,再从神经节换元发出纤维分别到内脏、心血管和腺体。交感(去甲肾上腺素能)神经系统的主要神经递质是儿茶酚胺类, 包括肾上腺素(epinephrine, EPI), 去甲肾上腺素(norepinephrine, NE)和多巴胺(dopamine, DA),还有一些分泌性神经递质如神经肽Y和嗜铬颗粒蛋白也可影响交感(去甲肾上腺素能)神经的兴奋性。交感(去甲肾上腺素能)神经系统的受体亚基主要分为α1、α2和β 3类,组成至少9种受体复合体,分别是3个α1类受体(ADRAlA、ADRAlB和ADRAlD)、3个α2类受体(ADRA2A、ADRA2B和ADRA2C)和3个β类受体(ADRBl、ADRB2和ADRB3)。研究显示干细胞上表达有交感神经受体, 干细胞的增殖、迁移分化以及动员、归巢受交感神经调控[6]

交感(去甲肾上腺素能)神经系统调控HSPCs  造血干祖细胞(hematopoietic stem and progenitor cells, HSPCs)作为一种成体干细胞,是发现最早、研究最深入及应用最广泛的干细胞, 其具有极强的自我更新潜能和多向分化能力[7]。静息状态的HSPCs主要存在于机体的骨髓造血龛中,包括骨内膜龛和血管周围龛。造血龛中的成骨细胞,nestin+间充质干细胞,富含CXCL12的CAR细胞和骨巨噬细胞,通过各种黏附分子如成骨细胞的CAMs,nestin+间充质干细胞的ANGPT-1, VCAM-1, SCF, CXCL-12以及CAR细胞的SCF和CXCL12共同维持HSPCs的静息状态。尽管研究报道仅有5%左右的交感神经分布在骨髓[8],但相较于大面积的骨内膜区的神经支配而言,骨髓腔的自主神经支配密度已经很高。人和啮齿类动物的HSPCs均表达肾上腺素能受体,主要是α1,α2和β2[6]。SNS对造血干细胞调控的研究最早报道于1998年,Maestroni等[9]描述了骨髓NE的昼夜节律改变和造血干细胞增殖呈正相关。SNS通过调控造血龛来调控HSPCs激活和动员入血[10]以及昼夜节律变化。HSPCs的归巢行为依赖于交感神经对HSPCs和骨髓造血龛的精细调控。前期研究发现交感(去甲肾上腺素能)神经可调节骨髓HSPCs动员的昼夜生理节律[11]、迁移能力、骨髓重建[12]及G-CSF或者岩藻多糖诱导的HSPCs动员入血以及归巢[13]。其中β2和β3肾上腺素能受体参与HSPCs/WBCs的动员和归巢[14]。CXCL12-CXCR4轴是调节HSPCs和白细胞动员入血和迁移的主要化学轴[15-16]。Mendez-Ferrer等[11]报道了通过光刺激SNS削弱骨髓龛CXCL12表达,促进HSPC动员入血, 而这一过程是需要β2和β3肾上腺素能受体的参与[14]。基因敲除或者化学性切除SNS则可抑制G-CSF诱导的CXCL12减少,从而抑制HSPCs的动员。尿苷二磷酸盐-半乳糖神经酰胺半乳糖基转移酶CGT为半乳糖脑苷脂合成酶,可影响神经髓鞘形成以及神经传导功能。Katayama等[17]发现敲除Cgt引起的HSPCs动员缺陷不是直接由半乳糖脑苷合成减少导致,更确切地说应该是交感神经对造血龛的调控所致。一项研究采用脓毒血症、镰刀细胞性血管闭塞和骨髓移植模型证实骨髓白细胞和干细胞募集至局部组织依赖于由β肾上腺素能受体以及局部微环境NE调控的内皮细胞黏附分子的昼夜节律性表达[13]。以上研究说明与生物钟密切相关的中枢神经系统分子可能通过调控局部NE释放影响HSPCs在骨髓中的定植、动员和归巢。

交感(去甲肾上腺素能)神经系统调控MSCs  间充质干祖细胞(mesenchymal stem and progenitor cells, MSCs)是一种多能干细胞,最先在骨髓中被发现并提取。随后在其他组织器官如脂肪[18]、皮肤[19]、脐带血[20]和肺[21]等也发现了MSCs。在骨髓中造血龛的成骨细胞和nestin+MSCs均表达β肾上腺素受体。不同的是成骨细胞是通过β2肾上腺素受体调控骨的重塑[22],而nestin+MSCs则是通过β3肾上腺素受体调控骨髓微环境的稳态以及干细胞动员[11]。在去神经的动物模型中发现阻断交感神经信号传递促进了静息MSCs的增殖;肾上腺素刺激则通过β3肾上腺素受体抑制成骨细胞分化和抑制调控HSPCs的相关基因表达[14]

副交感(胆碱能)神经系统对干细胞的调控  副交感(胆碱能)神经发自延髓内侧核,包括疑核、背核、三叉神经脊束核和孤束核[23-24]。副交感(胆碱能)系统还包括乙酰基转移酶(acetyltransferase, ChAT)和乙酰胆碱酯酶(acetylcholinesterase, AChE)。研究发现人CD34+造血祖细胞表达AChE-R且胆碱能系统可调控造血系统的发展。迷走神经是第十对脑神经,其主要成分是副交感神经纤维,由传入神经(80%的感觉神经纤维)和传出神经(运动神经纤维) [25]组成。机体局部损伤、感染或炎症信号可通过迷走传入纤维将信号传至孤束核[26]。迷走神经的传出纤维分布广泛,其节后纤维可支配多种内脏器官。传统观点认为迷走神经主要功能是通过神经递质乙酰胆碱(acetylcholine, Ach)调控心率、支气管舒缩、胃肠道功能[27]和骨质增生[28]。目前进一步研究发现迷走神经受体还表达在一些非神经细胞上,包括巨噬细胞、树突状细胞、淋巴细胞、角质细胞、内皮细胞[25]以及干细胞[29-31],从而发挥免疫调节、抗炎症作用以及影响干细胞增殖迁移归巢等能力。乙酰胆碱受体(acetylcholine receptors, AChRs)主要分为两大类:毒蕈碱型(muscarinic acetylcholine receptors, mAChRs; M1-M5)[32-33]和烟碱型(nicotinic, nAChR)[33]。mAChRs是G蛋白偶联受体家族。nAChRs则有异型或者同型亚基围成一个促离子型阳离子受体跨膜通道,可被尼古丁激活。人体中存在9种α亚基包括α1-7,α9和α10和4种β亚家族(β1-β4)[33]。除了α7, α9和α10 nAChRs为同聚体外,大部分nAChRs是异聚体。典型的nAChRs主要是钾离子和钠离子通道,而α7同聚体则是钙离子通道。有趣的是,除了通过AChRs发挥生理调控作用,α7在胆碱能系统对非神经组织的调控中也起重要作用,其中就包括对干细胞及其干细胞龛的调控。

副交感(胆碱能)神经系统调控  HSPCs Gahring等[34]采用α7nAChRCre:YFP小鼠确切地检测到骨髓细胞包括造血干细胞lineage-Sca1+c-kit+(LSK)表达迷走神经受体α7nAChR。这个结果与早期研究[35]认为nAchR在造血细胞系FDCP-mix中不表达的结论不一致。这可能与两个原因有关,一方面是nAchR本身表达量很低,很难用简单的FACS流式方法检测,另一方面可能是早期研究仅用了一种造血细胞系来检测,不能代表骨髓的所有细胞。Gahring等[36]证实在造血干细胞LSK、淋巴细胞或其他骨髓细胞均有约16.67%细胞表达α7nAChR,说明α7nAChR+细胞在造血早期就形成且比例不变,而且α7nAChR+细胞包括α7nAChR + LSK具备骨髓重建能力。研究发现胆碱能系统参与干细胞造血过程,尼古丁(nAChR激动剂)可抑制骨髓干细胞重建和造血功能。

干细胞滚动和黏附是干细胞归巢和动员的关键步骤,nAChRs参与了这个复杂而高度协调的生理过程。Khaldoyanidi等[37]研究发现尼古丁通过减少骨髓基质细胞及其细胞系MS-5的CD44表达抑制HSPCs归巢。同时,尼古丁还可降低肺微血管内皮细胞系LEISVO和骨髓来源的内皮细胞系STR-12的CD44表达, 增加LEISVO细胞系E-selectin表达[37]。尽管nAChRs敲除不会引起小鼠造血异常[38-40], 但有研究表明尼古丁激活内皮细胞上的nAchR可引起快速的细胞骨架重构和足突形成,抑制SDF-1介导的HSPCs跨内皮迁移[35]。用非选择性的nAChR阻滞剂美加明可阻断尼古丁介导的造血干细胞系黏附于内皮细胞的作用。HSPCs迁移减少和基质金属蛋白酶-9(matrix metalloproteinase-9, MMP-9)活性降低以及内皮细胞CD44表达减少有关。因此,nAChRs参与干细胞归巢,促进干祖细胞黏附内皮细胞,增强干细胞在组织血管定植能力[35]。GDNF受体家族α2(GDNF family receptor alpha 2, GFRα2)是促进副交感(胆碱能)纤维[41]和交感(胆碱能)纤维生长存活的蛋白[42]。因此,Gfra2-/-敲除鼠可作为骨髓胆碱能神经缺失模型来探究胆碱能神经对HSPCs的调控作用。最新研究发现Gfra2-/-敲除鼠夜间因骨髓血管黏附增多导致HSPCs朝骨髓归巢增强[43]

Pierce等[44]发现中枢胆碱能信号通过激活大脑毒蕈碱型受体(muscarinic receptor type-1 receptor, Chrm1R)传递激素转导信号从而影响G-CSF诱导的造血干细胞(hematopoietic stem cells, HSCs)动员。胆碱能神经通过激活下丘脑-垂体-甲状腺(hypothalamic-pituitary-adrenal, HPA)轴,促进糖皮质激素合成。糖皮质激素可激活HSCs的Nr3c1受体上调其肌动蛋白重组分子,从而增强的HSCs迁移能力。进一步研究还发现胆碱能信号可双向调节HSPCs和白细胞的昼夜节律性迁移[43]

副交感(胆碱能)神经系统调控MSCs  副交感(胆碱能)神经系统也能调控MSCs的迁移和分化[29-30, 45]。Hoogduijn等[30]发现人骨髓MSCs表达迷走神经受体nAChRs(α3, α5, α7),mAChR(M2), ChAT, ACh和AChE,且证实有机磷(AChE抑制剂)可影响MSC增殖和分化[46]。Schraufstatter等[47]也发现人MSCs表达nAChRs受体亚基α 7, β2和β4。最新研究发现胆碱能神经系统缺陷小鼠EPGfra2-/-骨髓Nestin-GEPlow MSCs减少了40%。

SNS和PNS协同调控干细胞  去甲肾上腺素能和胆碱能纤维均存在交感神经中,因此SNS和PNS很可能存在交叉对话协同调控干细胞行为。光可以兴奋交感神经而抑制副交感张力[48-49]。研究发现在白天光通过去甲肾上腺素受体β3兴奋骨髓外周交感神经,破坏CXCL12化学浓度梯度,促进HSPCs和白细胞动员入血;同时胆碱能纤维能减少干细胞血管黏附分子VCAM-1和E-selectin的表达,减少血管黏附和干细胞归巢[43]。相反,夜间交感神经的胆碱能纤维抑制骨髓去甲肾上腺素受体β3表达,破坏夜间内分泌来源的高水平肾上腺素诱导的去甲肾上腺素受体β2依赖的HSPCs血管黏附和归巢。正常生理状态下,夜间中枢PNS可抑制外周交感去甲肾上腺素张力,促进夜间干细胞归巢[43]。该结论和前期研究发现从白天向夜间过渡时小鼠副交感张力增加一致[50]。但是奇怪的是,夜间机体通过HPA轴释放更多肾上腺素[51-52]。交感神经还可调控乙酰胆碱受体的稳定性从而影响PNS系统对干细胞的调控[53]。目前,仅有少数文献报道骨髓局部胆碱能神经的调控且主要集中在骨重塑方面,胆碱能信号可通过抑制交感张力影响骨代谢[28, 54]。因此,PNS和SNS也可能交互作用共同调控干细胞行为。

其他神经肽系统对干细胞的调控  神经肽(Neuropeptide Y, NPY)是交感神经和脑细胞分泌的一种重要神经递质。最近越来越多研究发现NPY在骨髓造血干细胞的动员中发挥不可忽视的作用[55-59]。G-CSF动员HSPCs的过程也依赖NPY信号转导。NPY1可维持血管完整性,NPY2和NPY5则可介导内皮细胞间VE-Cadherin和CD31降解增加内皮细胞的间隙。研究发现DPP4/CD26可使骨髓窦内皮细胞的NPY1降解为NPY2和NPY5,使得骨髓窦血管通透性增加,HSPCs跨内皮动员增加[55]。神经生长因子(neurturin, NRTN)[60]与其受体GFRα2结合可维持胆碱能神经元的生长发育。囊泡乙酰胆碱转运体(vesicular acetylcholine transporter, VAChT)是交感神经的胆碱能纤维的标志[42]。García-García等[43]发现和Gfra2-/-鼠相比,Nrtn-/-鼠骨的VAChT+胆碱能纤维增加两倍, 但是中枢交感/副交感纤维数量不变。因此Nrtn-/-鼠可用作骨的胆碱能神经回复实验模型。研究还发现Nrtn-/-鼠白天骨髓HSPCs归巢减少了25%,说明局部交感(胆碱能)纤维抑制骨髓干细胞归巢[43]。再者,Nrtn-/-鼠夜间骨髓粘附分子VCAM-1和E-selectin显著减少, 说明了局部交感(胆碱能)信号纤维抑制干细胞的血管黏附。

自主神经系统对其他干细胞的调控  自主神经系统也参与其他干细胞的干性维持、增殖和分化过程。研究发现刺激nAChRs可上调小鼠胚胎干细胞(embryonic stem cells, ESCs)胚胎干性标志Oct-4和Rex-133。随后研究还报道了小鼠和人的ESCs具有胆碱能系统(ChAT, AChE, AChRs, ACh, BChE[36, 61-62], 尼古丁可激活ESCs上的nAChRs从而激活MAPK信号转导系统使ESCs朝成血管方向分化[36]。ACh增加了ESCs细胞活性但是抑制了增殖。ESCs细胞早期分化时ACh合成增加[63];哺乳动物胰腺副交感(迷走)神经和交感神经纤维分布密集,其中迷走神经促进胰腺β细胞增殖[64], 诱导内分泌祖细胞、α细胞和β细胞再生[65]。交感神经还参与了肝脏祖细胞的损伤修复过程[66]

临床意义  造血干细胞的移植治疗依赖于有效的外周血HSPCs动员。临床上常用G-CSF诱导干细胞动员,用于各种恶性血液疾病, 如淋巴母细胞白血病、淋巴瘤和多发性骨髓瘤的治疗。但在一些接受了抗肿瘤化疗的患者中这种动员效率往往较低[67]。研究报道化疗药的神经毒性可削弱交感神经张力使得干细胞的动员效率降低[68]。例如化疗方案中的高剂量糖皮质激素最终可导致肾上腺功能不全,从而导致这些患者的干细胞动员效果差[44]。在1型和2型糖尿病动物模型和糖尿病患者中,干细胞动员能力显著下降。这与骨髓龛中成骨细胞较少、颅盖骨骨髓神经纤维增加以及β-肾上腺素受体敏感性改变密切相关[69]。骨髓造血微环境的改变,包括交感神经损伤可促进各种血液病的恶性进展。在白血病模型中,儿茶酚胺能神经损伤后,表达β2受体的MSCs大量增殖。在骨髓增殖异常综合征疾病模型中,基因突变的HSPCs分泌IL-1β可损伤交感神经和施旺氏细胞。相反地,在急性髓细胞白血病小鼠中,神经病变可引起表达β3受体的MSCs凋亡而致其数量减少[70]。通过这些基础研究我们推测未来通过刺激自主神经或者给予神经受体激动剂、抑制剂或者神经递质类似物可能可以实现通过调控干细胞及其微环境,从而改变疾病的进展。

自主神经系统对干细胞调控的机制是错综复杂的,尽管目前对于这些机制的研究有了很大的进步,但是确切的机制还需要进一步探究。例如,迷走神经除了作用在骨髓龛外是否直接作用在干祖细胞本身,以及这些机制是否单一因素就足够诱导动员还是需要彼此配合共同发挥作用,这些都尚未被完全阐明。相信随着影响自主神经来动员干细胞机制研究的不断深入,继而转化并指导临床中治疗各种疾病,如肺纤维化、慢性阻塞性肺病及神经退行性病变等都将成为可能。

参考文献
[1]
MOORE KA, LEMISCHKA IR. Stem cells and their niches[J]. Science, 2006, 311(5769): 1880-1885. [DOI]
[2]
MORRISON SJ, SCADDEN DT. The bone marrow niche for haematopoietic stem cells[J]. Nature, 2014, 505(7483): 327-334. [DOI]
[3]
APOSTOLOVA G, DECHANT G. Development of neurotransmitter phenotypes in sympathetic neurons[J]. Auton Neurosci-Basic, 2009, 151(1): 30-38. [URI]
[4]
CANE KN, ANDERSON CR. Generating diversity:Mechanisms regulating the differentiation of autonomic neuron phenotypes[J]. Auton Neurosci-Basic, 2009, 151(1): 17-29. [URI]
[5]
ERNSBERGER U, ROHRER H. Development of the cholinergic neurotransmitter phenotype in postganglionic sympathetic neurons[J]. Cell Tissue Res, 1999, 297(3): 339-361. [DOI]
[6]
MUTHU K, IYER S, HE L K, et al. Murine hematopoietic stem cells and progenitors express adrenergic receptors[J]. J Neuroimmunol, 2007, 186(1-2): 27-36. [DOI]
[7]
EAVES CJ. Hematopoietic stem cells:concepts, definitions, and the new reality[J]. Blood, 2015, 125(17): 2605-13. [DOI]
[8]
JUNG WC, LEVESQUE JP, RUITENBERG MJ. It takes nerve to fight back:The significance of neural innervation of the bone marrow and spleen for immune function[J]. Semin Cell Dev Biol, 2017, 61: 60-70. [DOI]
[9]
MAESTRONI GJ, COSENTINO M, MARINO F, et al. Neural and endogenous catecholamines in the bone marrow.Circadian association of norepinephrine with hematopoiesis?[J]. Exp Hematol, 1998, 26(12): 1172-1177. [URI]
[10]
EHNINGER A, TRUMPP A. The bone marrow stem cell niche grows up:mesenchymal stem cells and macrophages move in[J]. J Exp Med, 2011, 208(3): 421-428. [DOI]
[11]
MENDEZ-FERRER S, LUCAS D, BATTISTA M, et al. Haematopoietic stem cell release is regulated by circadian oscillations[J]. Nature, 2008, 452(7186): 442-U4. [URI]
[12]
SPIEGEL A, SHIVTIEL S, KALINKOVICH A, et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34(+) cells through Wnt signaling[J]. Nat Immunol, 2007, 8(10): 1123-1131. [DOI]
[13]
SCHEIERMANN C, KUNISAKI Y, LUCAS D, et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues[J]. Immunity, 2012, 37(2): 290-301. [DOI]
[14]
MENDEZ-FERRER S, BATTISTA M, FRENETTE PS. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization[J]. Ann Ny Acad Sci, 2010, 1192: 139-144. [DOI]
[15]
NAGASAWA T, HIROTA S, TACHIBANA K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1[J]. Nature, 1996, 382(6592): 635-638. [DOI]
[16]
SUGIYAMA T, KOHARA H, NODA M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches[J]. Immunity, 2006, 25(6): 977-988. [DOI]
[17]
KATAYAMA Y, BATTISTA M, KAO WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow[J]. Cell, 2006, 124(2): 407-421. [DOI]
[18]
RODRIGUEZ A M, ELABD C, AMRI E Z, et al. The human adipose tissue is a source of multipotent stem cells[J]. Biochimie, 2005, 87(1): 125-128. [URI]
[19]
TOMA JG, AKHAVAN M, FERNANDES KJL, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin[J]. Nat Cell Biol, 2001, 3(9): 778-784. [DOI]
[20]
ERICES A, CONGET P, MINGUELL JJ. Mesenchymal progenitor cells in human umbilical cord blood[J]. Brit J Haematol, 2000, 109(1): 235-242. [URI]
[21]
SUMMER R, FITZSIMMONS K, DWYER D, et al. Isolation of an adult mouse lung mesenchymal progenitor cell population[J]. Am J Respir Cell Mol Biol, 2007, 37(2): 152-159. [DOI]
[22]
TAKEDA S, ELEFTERIOU F, LEVASSEUR R, et al. Leptin regulates bone formation via the sympathetic nervous system[J]. Cell, 2002, 111(3): 305-317. [DOI]
[23]
OGBONNAYA S, KALIAPERUMAL C. Vagal nerve stimulator:Evolving trends[J]. J Nat Sci Biol Med, 2013, 4(1): 8-13. [DOI]
[24]
PAVLOV VA, TRACEY KJ. Neural regulators of innate immune responses and inflammation[J]. Cell Mol Life Sci, 2004, 61(18): 2322-2331. [URI]
[25]
GALLOWITSCH-PUERTA M, PAVLOV VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway[J]. Life Sci, 2007, 80(24-25): 2325-2329. [DOI]
[26]
TRACEY KJ. Reflex control of immunity[J]. Nat Rev Immunol, 2009, 9(6): 418-428. [DOI]
[27]
AGOSTONI E, CHINNOCK JE, DALY M DB, et al. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat[J]. J Physiol-London, 1957, 135(1): 26. [URI]
[28]
BAJAYO A, BAR A, DENES A, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual[J]. P Natl Acad Sci USA, 2012, 109(38): 15455-15460. [DOI]
[29]
SCHRAUFSTATTER IU, DISCIPIO RG, KHALDOYANIDI SK. Alpha 7 subunit of nAChR regulates migration of human mesenchymal stem cells[J]. J Stem Cells, 2009, 4(4): 203-215. [URI]
[30]
HOOGDUIJN MJ, CHENG A, GENEVER PG. Functional nicotinic and muscarinic receptors on mesenchymal stem cells[J]. Stem Cells Dev, 2009, 18(1): 103-112. [DOI]
[31]
ZHANG H P, GUO D X, WANG L Y, et al. Effect of nicotine on Oct-4 and Rex-1 expression of mouse embryonic stem cells[J]. Rep Toxicol, 2005, 19(4): 473-478. [DOI]
[32]
WESS J. Molecular biology of muscarinic acetylcholine receptors[J]. Crit Rev Neurobiol, 1996, 10(1): 69-99. [DOI]
[33]
ALBUQUERQUE EX, PEREIRA EFR, ALKONDON M, et al. Mammalian nicotinic acetylcholine receptors:from structure to function[J]. Physiol Rev, 2009, 89(1): 73-120. [URI]
[34]
GAHRING LC, ENIOUTINA EY, MYERS EJ, et al. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage[J]. PLoS One, 2013, 8(3): e57481. [DOI]
[35]
SEROBYAN N, SCHRAUFSTATTER IU, STRONGIN A, et al. Nicotinic acetylcholine receptor-mediated stimulation of endothelial cells results in the arrest of haematopoietic progenitor cells on endothelium[J]. Br J Haematol, 2005, 129(2): 257-265. [DOI]
[36]
SEROBYAN N, JAGANNATHAN S, ORLOVSKAYA I, et al. The cholinergic system is involved in regulation of the development of the hematopoietic system[J]. Life Sci, 2007, 80(24-25): 2352-2360. [DOI]
[37]
KHALDOYANIDI S, SIKORA L, ORLOVSKAYA I, et al. Correlation between nicotine-induced inhibition of hematopoiesis and decreased CD44 expression on bone marrow stromal cells[J]. Blood, 2001, 98(2): 303-312. [DOI]
[38]
ROSS SA, WONG JY, CLIFFORD JJ, et al. Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse[J]. J Neurosci, 2000, 20(17): 6431-6441. [DOI]
[39]
ORR-URTREGER A, BROIDE RS, KASTEN MR, et al. Mice homozygous for the L250T mutation in the alpha7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth[J]. J Neurochem, 2000, 74(5): 2154-2166. [URI]
[40]
XU W, ORR-URTREGER A, NIGRO F, et al. Multiorgan autonomic dysfunction in mice lacking the beta2 and the beta4 subunits of neuronal nicotinic acetylcholine receptors[J]. J Neurosci, 1999, 19(21): 9298-9305. [DOI]
[41]
ROSSI J, LUUKKO K, POTERYAEV D, et al. Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor[J]. Neuron, 1999, 22(2): 243-252. [DOI]
[42]
HILTUNEN PH, ALRAKSINEN MS. Sympathetic cholinergic target innervation requires GDNF family receptor GFR alpha 2[J]. Mol Cell Neurosci, 2004, 26(3): 450-457. [DOI]
[43]
GARCIA-GARCIA A, KORN C, GARCIA-FERNANDEZ M, et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes[J]. Blood, 2019, 133(3): 224-236. [DOI]
[44]
PIERCE H, ZHANG D, MAGNON C, et al. Cholinergic signals from the CNS regulate G-CSF-mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay[J]. Cell Stem Cell, 2017, 20(5): 648-658. [DOI]
[45]
KUNISAKI Y, BRUNS I, SCHEIERMANN C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence[J]. Nature, 2013, 502(7473): 637-643. [DOI]
[46]
HOOGDUIJN MJ, RAKONCZAY Z, GENEVER PG. The effects of anticholinergic insecticides on human mesenchymal stem cells[J]. Toxicol Sci, 2006, 94(2): 342-350. [DOI]
[47]
SCHRAUFSTATTER IU, DISCIPIO RG, KHALDOY-ANIDI SK. Alpha 7 subunit of nAchR regulates migration of human mesenchymal stem cells[J]. J Stem Cells, 2009, 4(4): 203-215.
[48]
MUTOH T, SHIBATA S, KORF HW, et al. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice[J]. J Physiol-London, 2003, 547(1): 317-332. [DOI]
[49]
NIIJIMA A, NAGAI K, NAGAI N, et al. Light Enhances sympathetic and suppresses vagal outflows and lesions including the suprachiasmatic nucleus eliminate these changes in rats[J]. J Autonom Nerv Syst, 1992, 40(2): 155-160.
[50]
BANDO H, NISHIO T, HORST GTJVAN DER, et al. Vagal regulation of respiratory clocks in mice[J]. J Neurosci, 2007, 27(16): 4359-4365. [DOI]
[51]
FAJLSCHEER, HU K, EVONIUK H, et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function[J]. P Natl Acad Sci USA, 2010, 107(47): 20541-20546. [DOI]
[52]
DIMITROV S, BENEDICT C, HEUTLING D, et al. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets[J]. Blood, 2009, 113(21): 5134-5143. [DOI]
[53]
RODRIGUES ACZ, MESSI ML, WANG ZM, et al. The sympathetic nervous system regulates skeletal muscle motor innervation and acetylcholine receptor stability[J]. Acta Physiologica, 2019, 225(3): e13195. [URI]
[54]
SHI Y, OURY F, YADAV V K, et al. Signaling through the M-3 Muscarinic Receptor Favors Bone Mass Accrual by Decreasing Sympathetic Activity[J]. Cell Metab, 2010, 11(3): 231-238. [DOI]
[55]
PARK MH, JIN HK, MIN WK, et al. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow[J]. EMBO J, 2015, 34(12): 1648-1660. [DOI]
[56]
PARK MH, KIM N, JIN HK, et al. Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization[J]. BMB Rep, 2017, 50(3): 138-143. [DOI]
[57]
PARK MH, LEE JK, KIM N, et al. Neuropeptide Y induces hematopoietic stem/progenitor cell mobilization by regulating matrix metalloproteinase-9 activity through Y1 receptor in osteoblasts[J]. Stem Cells, 2016, 34(8): 2145-2156. [DOI]
[58]
PARK MH, M IK, JIN HK, et al. Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment[J]. BMB Rep, 2015, 48(12): 645-646. [DOI]
[59]
SINGH P, HOGGATT J, KAMOCKA MM, et al. Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells[J]. J Clin Invest, 2017, 127(12): 4527-4540. [DOI]
[60]
HEUCKEROTH RO, ENOMOTO H, GRIDER JR, et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons[J]. Neuron, 1999, 22(2): 253-263. [DOI]
[61]
PARAOANU LE, STEINERT G, KOEHLER A, et al. Expression and possible functions of the cholinergic system in a murine embryonic stem cell line[J]. Life Sci, 2007, 80(24-25): 2375-2379. [DOI]
[62]
LANDGRAF D, BARTH M, LAYER PG, et al. Acetylcholine as a possible signaling molecule in embryonic stem cells:Studies on survival, proliferation and death[J]. Chem-Biol Interact, 2010, 187(1-3): 115-119. [DOI]
[63]
WESSLER I, MICHEL-SCHMIDT R, SCHMIDT H, et al. Upregulated acetylcholine synthesis during early differentiation in the embryonic stem cell line CGR8[J]. Neurosci Lett, 2013, 547: 32-36. [DOI]
[64]
MEDINA A, YAMADA S, HARA A, et al. Involvement of the parasympathetic nervous system in the initiation of regeneration of pancreatic beta-cells[J]. Endocr J, 2013, 60(5): 687-696. [URI]
[65]
YAMAMOTO J, IMAI J, IZUMI T, et al. Neuronal signals regulate obesity induced beta-cell proliferation by FoxM1 dependent mechanism[J]. Nat Commun, 2017, 8(1): 1930. [DOI]
[66]
OBEN JA, ROSKAMS T, YANG S, et al. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury[J]. Hepatology, 2003, 38(3): 664-673. [DOI]
[67]
TO LB, LEVESQUE JP, HERBERT KE. How I treat patients who mobilize hematopoietic stem cells poorly[J]. Blood, 2011, 118(17): 4530-4540. [DOI]
[68]
LUCAS D, SCHEIERMANN C, CHOW A, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration[J]. Nat Med, 2013, 19(6): 695-703. [DOI]
[69]
FERRARO F, LYMPERI S, MENDEZ-FERRER S, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function[J]. Sci Transl Med, 2011, 3(104): 13. [URI]
[70]
MARYANOVICH M, TAKEISHI S, FRENETTE PS. Neural regulation of bone and bone marrow[J]. Cold Spring Harb Perspect Med, 2018, 8(9): a031344. [DOI]

文章信息

陈小燕, 李清梅, 季诗梦, 程婷婷, 周建, 陈翠翠, 苏枭, 宋元林
CHEN Xiao-yan, LI Qing-mei, JI Shi-meng, CHENG Ting-ting, ZHOU Jian, CHEN Cui-cui, SU Xiao, SONG Yuan-lin
干细胞稳态和动员的自主神经调控研究进展
The autonomic nervous regulation of stem cell homeostasis and mobilization
复旦学报医学版, 2020, 47(3): 448-455.
Fudan University Journal of Medical Sciences, 2020, 47(3): 448-455.
Corresponding author
SONG Yuan-lin, E-mail:ylsong70@163.com.
基金项目
国家自然科学基金(81770075,81630001,81490533,81570028,81770039);上海市临床重点专科建设项目(呼吸病学);973国家重点基础研究发展计划(2015CB553404);科技部国家重点研发计划(2016YFC1304104);"重大新药创制"科技重大专项(2018ZX09201002-006)
Foundation item
This work was supported by the National Natural Science Foundation of China (81770075, 81630001, 81490533, 81570028, 81770039), the Construction Project of Key Clinical Specialty of Shanghai (Respiratory Medicine), the Major State Basic Research Development Program of China (973 Program, 2015CB553404), National Key R & D Plan of Ministry of Science and Technology (2016YFC1304104), National Major Scientific and Technological Special Project for"Significant New Drugs Development"(2018ZX09201002-006)

工作空间