心脏移植是终末期心力衰竭患者标准的治疗方法,可以有效改善终末期心衰患者的生活质量,延长患者的寿命,但是移植术后早期的多种并发症严重影响了接受心脏移植患者的预后。其中急性肾损伤(acute kidney injury,AKI)在心脏移植术后的发生率较高,根据以往各中心发表的临床研究数据统计,心脏移植术后AKI的发生率为22%~76%[1-4]。肾脏对于血流动力学的变化敏感,尤其是低灌注和静脉回流受阻,肾功能损害被视为术后血流动力学障碍的早期器官表现[5]。导致术后AKI的危险因素有很多,如麻醉、术后为抗排斥而使用的免疫抑制药物和术后的血流动力学不稳定[1]。心脏移植术后的AKI通常与不良的临床结局相关,包括心脏移植术后的生存率[1, 6-7]。本研究对在复旦大学附属中山医院心血管外科接受原位心脏移植的患者术后AKI的发生率和危险因素进行报道。
资料和方法研究对象 本研究纳入了2016年1月至2021年3月在复旦大学附属中山医院接受心脏移植的成年患者,年龄大于18岁,排除再次接受心脏移植、同时接受心脏/肾脏移植、术前接受肾脏替代治疗以及缺少术前和术后血清肌酐(serum creatinine,Scr)检测指标的患者。肾素-血管紧张素系统(renin-angiotensin system,RAS)抑制剂的使用者被定义为在手术前至少1个月定期使用血管紧张素转换酶抑制剂(angiotensin converting enzyme inhibitor,ACEI)或血管紧张素受体拮抗剂(angiotensin receptor blocker,ARB),而其他人则被定义为非使用者。患者数据来自中山医院数据库。随访时间为接受心脏移植术后6个月。
本研究获得复旦大学附属中山医院伦理委员会审批(批准号:B2021-668R)。
术后AKI的定义 Scr浓度基线选择的是患者移植前6个月内最近的门诊Scr浓度。当缺少移植前的门诊数据时,入院时的Scr浓度则被认为是基线浓度。术后7天内的检测结果作为术后Scr浓度。术后AKI的分期依据改善肾脏病全球预后组织(Kidney Disease:Improving Global Outcomes,KDIGO)的标准[8],术后AKI 1期定义为术后Scr水平较基线增加超过0.3 mg/dL(26.5 μmol/L)或者术后的Scr浓度为术前基线的1.5~1.9倍,AKI 2期被定义为术后Scr水平为术前的2~2.9倍,AKI 3期被定义为术后Scr水平超过术前基线水平3倍以上或患者使用了肾脏替代治疗(renal replacement therapy,RRT)。AKI治愈被定义为在发生AKI的10天内,Scr水平恢复到基线的0.3 mg/dL以内[9]。根据相关指南[10],慢性肾脏疾病(chronic kidney disease,CKD)被定义为肾脏结构或功能异常,持续时间超过3个月,并对健康有影响。具体指患者出现以下任何一种情况并且持续时间超过3个月则可以诊断为CKD:(1)尿蛋白与尿肌酐的比值≥30 mg/g;尿白蛋白排除率≥30 mg/24 h;(2)尿液沉渣检测异常;(3)由于肾小管疾病导致电解质及其他实验室检查异常;(4)肾脏组织学检查异常;(5)通过肾脏成像显示肾脏的结构异常;(6)肾移植病史;(7)肾小球滤过率<60 mL·min-1·1.73 m-2。
免疫抑制治疗方案 在研究期间,每位患者都接受了相同的免疫抑制方案:在术中和术后第4天给予白细胞介素-2受体拮抗剂(巴利昔单抗20 mg)治疗;术中静脉给予甲泼尼龙500 mg。口服三联药维持方案,包括1 mg他克莫司,调整剂量使得前3个月的外周血药物浓度达到10~15 ng/mL,或1~3 mg/kg;环孢菌素,调整剂量使得前3个月谷浓度达到300 ng/mL;750 mg霉酚酸酯,每12 h使用1次;1 mg/kg泼尼松龙,每日2次[11]。
研究终点 主要终点事件为心脏移植术后7天内AKI的发生率,次要终点事件为移植术后1个月的死亡率。统计资料包括术前诊断、既往疾病史,术前心脏超声检查结果,术前相关实验室检查结果,术前通过漂浮导管监测得到的血流动力学结果,供体心脏冷缺血时间,术中体外循环时间,主动脉阻断时间,体外膜肺氧合植入时间以及使用时间,术中的输血情况,术后重症监护室住院时间,插管时间,术后超声及实验室检查结果,术后患者的生存情况。
统计学分析 采用SPSS 20.0统计软件进行数据分析。连续变量以x±s表示,分类变量以百分比表示。在进行组间相关变量差异的比较时,对于服从正态分布的连续变量,采用单因素方差分析,如果连续变量不服从正态分布则采取Kruskal-Wallis检验。分类变量间的组间比较采取χ2检验。移植术后患者生存率的分析采用Kaplan-Meier生存分析。移植术后AKI发生率的独立危险因素先由有序单因素Logistic回归分析进行第一步的筛选,如果变量满足P<0.10或者有相关的临床意义时进行下一步的有序多因素Logistic回归分析。双侧P<0.05为差异有统计学意义。
结果患者一般资料 共计89名患者入组,年龄是22~72岁,平均年龄(47.45±12.68)岁。入组的89例患者中,男性66例,女性23例。患者BMI为11.812~32.368 kg/m2,均值(22.687±3.581)kg/m2。原发病因中57例扩张型心肌病,6例限制性心肌病,8例缺血性心肌病,3例肥厚性心肌病,3例瓣膜病,1例是先天性心脏病,4例左室致密化不全,2例致心律失常性右室心肌病,5例原发性心脏肿瘤。所有入组患者中,共有8例术前诊断为CKD,平均术前Scr为(162.75±72.96)μmol/L。
术后AKI的发生率 在纳入分析的89例患者中,43例患者术后发展为AKI,发生率为48.3%。其中12(13.5%)例为AKI 1期,5(5.6%)例为AKI 2期,26(29.2%)例为AKI 3期。根据AKI分期对人口统计学和临床特征进行分组,组间比较的分析结果见表 1。术前CKD与术后AKI的进展并无明显相关(10.9%、8.3%、0、7.7%,P=1.0),AKI分期较高的患者术前有过RAS抑制剂用药史(67.4%、58.3%、20.0%、46.2%,P=0.110)的比例更少,其中ACEI用药史的患者中这一趋势更加明显(28.3%、8.3%、0,3.8%,P=0.033),但是与术前ARB用药史(50.0%、58.3%、20.0%、46.2%,P=0.585)之间并无明显相关。AKI分期较高的患者术中体外循环时间更长(328.0±274.1、385.6±233.8、295.4±244.1、574.5±334.5,P=0.001),术中输血红细胞超过4个单位的患者比例更高(2.2%,8.3%,0,23.1%,P=0.022)。
[x±s or n(%)] | |||||||||||||||||||||||||||||
Demographics | No AKI | AKI stage 1 | AKI stage 2 | AKI stage 3 | P | ||||||||||||||||||||||||
Age(y) | 48.0±12.6 | 50.5±11.9 | 50.0±18.0 | 49.1±9.9 | 0.80 | ||||||||||||||||||||||||
Body mass index(kg/m2) | 22.7±3.6 | 24.0±1.8 | 24.7±6.4 | 22.2±3.4 | 0.25 | ||||||||||||||||||||||||
Female | 12(26.1) | 2(16.7) | 0(0) | 9(34.6) | 0.35 | ||||||||||||||||||||||||
Prior cardiac surgery | 6(13.0) | 3(25.0) | 1(20.0) | 4(15.4) | 0.66 | ||||||||||||||||||||||||
Prior ACEI | 13(28.3) | 1(8.3) | 0(0) | 1(3.8) | 0.03 | ||||||||||||||||||||||||
Renin-angiotensin system inhibitor(%) | 67.4 | 58.3 | 20.0 | 46.2 | 0.11 | ||||||||||||||||||||||||
Angiotensin receptor blocker(%) | 50.0 | 58.3 | 20.0 | 46.2 | 0.59 | ||||||||||||||||||||||||
Ischemic time(min) | 212.9±106.8 | 268.4±127.5 | 225.6±113.0 | 240.9±111.0 | 0.52 | ||||||||||||||||||||||||
CKD | 5(62.5) | 1(12.5) | 0(0) | 2(25.0) | 0.86 | ||||||||||||||||||||||||
Preoperative | |||||||||||||||||||||||||||||
Brain natriuretic peptide(ng/L) | 5 404.1±6 213.0 | 3 033.4±2 235.1 | 1 748.2±1 464.6 | 5 173.4±3 930.5 | 0.11 | ||||||||||||||||||||||||
Cardiac troponin T(μg/L) | 0.183±0.476 | 0.040±0.030 | 0.148±0.293 | 0.092±0.131 | 0.17 | ||||||||||||||||||||||||
Total cholesterol(mmol/l) | 24.8±13.1 | 24.1±14.9 | 23.0±14.4 | 33.2±32.7 | 0.92 | ||||||||||||||||||||||||
Albumin(g/L) | 41.2±8.2 | 43.8±4.2 | 44.8±3.0 | 42.4±6.9 | 0.61 | ||||||||||||||||||||||||
Lactate dehydrogenase(U/L) | 294.8±123.1 | 275.0±81.2 | 234.0±104.9 | 276.5±91.8 | 0.45 | ||||||||||||||||||||||||
Glomerular filtration rate(mL/min) | 69.2±30.1 | 98.3±11.9 | 85.0±0 | 62.0±18.8 | 0.07 | ||||||||||||||||||||||||
Scr(μmoI/L) | 116.1±50.4 | 91.0±24.7 | 90.8±20.9 | 124.3±81.3 | 0.37 | ||||||||||||||||||||||||
Left ventricular end-diastolic dimension(mm) | 65.5±16.1 | 72.3±14.1 | 62.0±13.7 | 64.4±12.6 | 0.60 | ||||||||||||||||||||||||
Left ventricular ejection fraction(%) | 30.9±14.6 | 37.5±18.2 | 35.4±19.0 | 33.4±10.2 | 0.28 | ||||||||||||||||||||||||
Cardiac output(L/min) | 3.1±1.0 | 3.7±0.1 | 4.6±0.4 | 3.9±1.2 | 0.31 | ||||||||||||||||||||||||
Cardiac index(min/m2) | 1.8±0.6 | 2.6±0.8 | 2.5±0.3 | 2.3±0.9 | 0.59 | ||||||||||||||||||||||||
Systolic blood pressure(mmHg) | 100.0±19.3 | 94.4±9.3 | 89.3±18.0 | 106.5±24.5 | 0.94 | ||||||||||||||||||||||||
Diastolic blood pressure(mmHg) | 69.8±16.5 | 57.0±12.1 | 52.7±6.0 | 67.8±11.5 | 0.25 | ||||||||||||||||||||||||
Central venous pressure(mmHg) | 11.7±5.5 | 12.7±7.5 | 7.7±2.1 | 11.3±6.4 | 0.49 | ||||||||||||||||||||||||
PASP(mmHg) | 52.3±15.2 | 45.6±20.3 | 32.7±3.1 | 46.8±12.5 | 0.27 | ||||||||||||||||||||||||
Pulmonary artery diastolic pressure(mmHg) | 27.4±10.2 | 29.4±15.9 | 11.3±2.5 | 19.9±7.1 | 0.12 | ||||||||||||||||||||||||
Pulmonary artery wedge pressure(mmHg) | 24.6±7.7 | 21.3±9.5 | 19.6±5.5 | 27.9±7.1 | 0.29 | ||||||||||||||||||||||||
PVR(Wood) | 5.1±2.2 | 2.8±1.8 | 3.7±1.9 | 3.8±2.0 | 0.16 | ||||||||||||||||||||||||
Right atrial pressure(mmHg) | 11.7±5.2 | 12.6±8.9 | 10.0±4.0 | 11.8±7.6 | 0.89 | ||||||||||||||||||||||||
Intraoperative | |||||||||||||||||||||||||||||
Aortic cross-clamping time(min) | 46.7±15.1 | 56.1±19.8 | 46±16.9 | 57.6±25.0 | 0.24 | ||||||||||||||||||||||||
CPB time(min) | 157.8±56.6 | 208.0±89.6 | 202.0±62.3 | 220.5±75.0 | 0.003 | ||||||||||||||||||||||||
RBC>4U | 1(2.2) | 1(8.3) | 0(0) | 6(23.1) | 0.022 | ||||||||||||||||||||||||
Post-operative | |||||||||||||||||||||||||||||
Intensive care unit time(h) | 328.0±274.1 | 385.6±233.8 | 295.4±244.1 | 574.5±334.5 | 0.001 | ||||||||||||||||||||||||
mechanical ventilation time(h) | 68.7±74.2 | 95.4±82.6 | 102.2±78.2 | 137.0±109.3 | 0.014 | ||||||||||||||||||||||||
Left ventricular end-diastolic dimension(mm) | 42.8±3.1 | 44.7±4.7 | 39.8±7.3 | 41.6±4.3 | 0.088 | ||||||||||||||||||||||||
Left ventricular ejection fraction(%) | 64.6±3.4 | 63.3±6.2 | 65.2±5.9 | 62.4±5.7 | 0.37 | ||||||||||||||||||||||||
Brain natriuretic peptide(ng/L) | 2 401.7±2 559.5 | 3 352.0±3 235.2 | 2 606.4±2 009.4 | 10 659.8±12 538.8 | 0.008 | ||||||||||||||||||||||||
Cardiac troponin T(μg/L) | 0.111±0.083 | 0.156±0.085 | 0.238±0 | 0.560±0.413 | <0.001 | ||||||||||||||||||||||||
Total cholesterol(mmol/L) | 17.3±17.9 | 21.2±11.8 | 11.7±2.5 | 48.1±79.2 | 0.35 | ||||||||||||||||||||||||
Albumin(g/L) | 41.1±5.7 | 38.6±3.4 | 39.0±12.7 | 36.6±5.1 | 0.012 | ||||||||||||||||||||||||
Alanine aminotransferase(IU/L) | 44.1±41.1 | 26.8±15.1 | 33.0±42.4 | 41.8±34.0 | 0.48 | ||||||||||||||||||||||||
Aspartate aminotransferase(IU/L) | 25.9±15.7 | 20.0±15.3 | 34.0±7.1 | 36.9±34.8 | 0.057 | ||||||||||||||||||||||||
Lactate dehydrogenase(U/L) | 290.3±113.9 | 275.7±92.2 | 506±271.5 | 325.3±98.7 | 0.110 | ||||||||||||||||||||||||
Glomerular filtration rate(mL/min) | 96.5±23.6 | 83.8±30.5 | 67.5±55.9 | 55.6±37.7 | 0.001 | ||||||||||||||||||||||||
Scr(μmoI/L) | 75.5±29.5 | 94.5±42.0 | 152.0±94.8 | 168.8±101.6 | <0.001 | ||||||||||||||||||||||||
ECMO | 4(8.7) | 4(33.3) | 0(0) | 11(42.3) | 0.003 | ||||||||||||||||||||||||
For differences across groups,the one-way analysis of variance was adopted to compare continuous variables,and the chi-square test was used to compare categorical variables.ACEI:Angiotensin converting enzyme inhibitor;CKD:Chronic kidney disease;PASP:Pulmonary artery systolic pressure;PVR:Pulmonary vascular resistance;CPB:Cardiopulmonary bypass;RBC:Red blood cell;ECMO:Extracorporeal membrane oxygenation. |
术后AKI的危险因素 根据单因素有序多元回归分析,对心脏移植术后有影响的单因素包括术前RAS抑制剂的使用,术中红细胞超过4个单位,术中体外循环时间大于170 min,术中及术后使用体外膜肺氧合进行机械循环支持。共有8名患者术前诊断为CKD,但是χ2检验的结果显示术前CKD对术后AKI无明显预测作用(χ2=0.752,P=0.861)。通过多因素有序多元回归分析建立预测模型,模型中术中体外循环时间大于170 min(OR=0.177,95%CI:0.071~0.438,P<0.001),术中输注红细胞大于4个单位(OR=0.094,95%CI:0.016~0.531,P=0.007)差异仍有统计学意义(表 2)。
Risk factors | Univariable model | Multivariable model | |||
OR(95% CI) | P | OR(95% CI) | P | ||
ACEI/ARB | 0.440(0.197-0.985) | 0.046 | 0.543(0.223-1.324) | 0.179 | |
ECMO | 2.733(0.956-7.816) | 0.061 | 1.379(0.422-4.51) | 0.595 | |
CBP time>170 min | 6.197(2.584-14.776) | <0.001 | 5.663(2.282-14.051) | <0.001 | |
RBC>4 U | 8.719(1.701-44.707) | 0.009 | 10.687(1.883-60.657) | 0.007 | |
CI:Confidenceinterval;OR:Odds ratio;ACEI:Angiotensin converting enzyme inhibitor;ARB:Angiotensin receptor blocker;ECMO:Extracorporeal membrane oxygenation;CPB:Cardiopulmonary bypass;RBC:Red blood cell. |
术后AKI的预后 将AKI分级进行生存分析,患者心脏移植术后1个月内生存率为87.64%,单因素生存分析统计结果显示AKI分级(log-rank:17.697,P=0.001)对术后的生存率有预测作用(图 1)。AKI分期与预后相关,AKI分期越高,术后ICU的住院时间(P=0.001)和机械通气时间(P=0.014)越长,同时根据术后1个月的实验学检测的结果显示,术后患者的心、肝、肾功能恢复皆受影响。并且AKI的分期越高,术中及术后接受体外膜肺氧合机械循环支持(8.7%、33.3%、0、42.3%,P=0.003)的患者比例也就越高。AKI患者中需要肾脏替代治疗(continue renal replacement therapy,CRRT)的患者比例与AKI的等级正相关(P<0.001),AKI的分期越高,术后AKI病例中需要接受CRRT的病例数也越多,在术后AKI患者中接受CRRT治疗的患者为22例,均发生在AKI 3级的患者分组中,AKI 3级患者中接受CRRT治疗的比例为84.6%;同时单因素生存分析结果显示术后接受CRRT治疗(P<0.001)是术后患者生存率的危险因素。
![]() |
图 1 AKI分期相关的心脏移植术后生存曲线 Fig 1 Kaplan-Meier curves of survival between heart transplant recipients with AKI stage |
本研究通过基于2016年1月至2021年3月在复旦大学附属中山医院接受心脏移植的成年患者临床资料统计出AKI严重程度危险因素。这有助于使医务人员能够预测接受心脏移植手术的患者的AKI的进展,有利于开展个性化风险评估和制定围手术期的相关决策。AKI与移植术后心功能的恢复是密切相关的,AKI分期与术后的死亡率、ICU住院时间和机械通气时间相关,并且AKI的分期越高,使用体外膜肺氧合进行机械支持的患者比例也就越高,同时对患者术后1个月的心、肝、肾功能的恢复都有影响。因此根据术后AKI进展的概率做出对应的临床决策是必要的。通过术前评估,对相关危险因素的控制可以减少患者移植术后AKI的发生,有效地改善心脏移植的预后。
在这项89例接受心脏移植患者的单中心回顾性研究中,采用KDIGO标准对术后AKI进行定义和分级,将以往常常忽略的轻型AKI也纳入研究,AKI的发生率是48.3%,与以往的医学文献报道的发生率相当[1-4]。患者术前的实验室检查结果显示无AKI组术前Scr明显高于AKI 1/2期组,我们使用单因素方差分析对4组Scr值进行两两比较,统计结果提示无显著差异,因此我们推测可能的原因是无AKI组Scr值的变异较大(SD=50.332)。同时我们发现术中体外循环时间大于170 min、术中输注红细胞大于4个单位是与心脏移植术后AKI进展的独立预测因素。之前有许多临床研究证明体外循环时间是心脏手术术后AKI的危险因素[12-13],体外循环持续时间延长、主动脉阻断的时间延长、体外循环时间非搏动性流动、体外循环时间过程中发生的溶血等因素都可能会增加AKI的风险[14]。患者接受体外循环后会激活体内多种炎症途径和氧化应激[15-16],以及由于溶血急剧升高的游离血红蛋白可导致直接损伤肾小管上皮细胞[17],从而导致AKI。接受体外循环的患者术后AKI的发生率在18.2%~30%[18],本中心的研究结果与文献结果一致,为降低术后AKI的发生率,应尽可能将体外循环时间降至最低。此外相关临床研究表明在体外循环期间保持氧输送指数值在临界值以上可降低AKI的发生率[19-21],基于该策略的实施引起不良反应的证据很少,可以考虑纳入AKI的临床管理。
红细胞在储存过程会发生高能磷酸盐耗尽,导致红细胞稳态被破坏,炎症物质在上清液中积累[22],进一步激活了体内的血小板和单核细胞,同时改变了血红素的代谢,导致内皮功能障碍[23-25],通过机械洗涤红细胞上清中的炎症成分从而减弱输血后产生的炎症反应和器官功能障碍[26],但是红细胞洗涤会导致游离血红蛋白的加速释放,基础实验证明血红蛋白浓度增加会使实验动物出现急性内皮损伤、氧化应激和急性肾损伤,这可能会抵消通过洗涤降低红细胞衍生微粒所带来的益处[27]。为改善心脏移植术后AKI的发生,术中可以采用洗涤红细胞进行输血,但最主要的还应是尽可能控制术中的输血量。
ACEI和ARB均可引起肾小球出球小动脉舒张,从而导致肾小球滤过压降低。在低血容量期间,较低的GFR容易促进AKI的进展[28]。AKI进展阶段由于肾小管坏死和肾内RAS系统的激活影响肾功能的恢复,导致病情进一步向CKD转变。有相关临床研究表明术前使用RAS抑制剂可降低心脏手术相关AKI中继发CKD的风险和死亡率[29-32],但是也有研究显示术前RAS抑制剂的使用对降低AKI进展和术后死亡率的影响程度不大[33]。不同中心研究结果的差异,证明RAS抑制剂对术后AKI的影响还有待进一步的研究。本中心的研究结果显示,术前RAS抑制剂对心脏移植术后肾功能的恢复和术后死亡率没有影响。
尽管本中心心脏手术患者的选择和相关的诊疗方案是根据目前的国际标准进行的,但是由于这是一项回顾性的单中心研究,可能会限制我们的结果对其他中心患者的适用性,相关临床结果还需要进一步深入。
心脏移植患者术后AKI发生率较高,移植后AKI的发生是影响心脏移植患者预后的重要危险因素。我们的研究结果表明,体外循环时间>170 min,术中输注红细胞超过4个单位是预测心脏移植后发生AKI的独立危险因素,针对这些危险因素进行管理可能可以减少术后AKI的发生。
作者贡献声明 袁莉 数据收集,统计分析,论文撰写。刘峻江,杨兆华,杨守国 论文构思和修订,文献调研,可行性分析。张红强,王帆顺,刘欢 论文修订,可行性分析。王春生,孙晓宁 资助获取,论文指导和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
FORTRIE G, MANINTVELD OC, CALISKAN K, et al. Acute kidney injury as a complication of cardiac transplantation: incidence, risk factors, and impact on 1-year mortality and renal function[J]. Transplantation, 2016, 100(8): 1740-1749.
[DOI]
|
[2] |
TÜRKER M, ZEYNELOGLU P, SEZGIN A, et al. RIFLE criteria for acute kidney dysfunction following heart transplantation: incidence and risk factors[J]. Transplant Proc, 2013, 45(10): 3534-3537.
[DOI]
|
[3] |
SCHIFERER A, ZUCKERMANN A, DUNKLER D, et al. Acute kidney injury and outcome after heart transplantation: large differences in performance of scoring systems[J]. Transplantation, 2016, 100(11): 2439-2446.
[DOI]
|
[4] |
GUDE E, ANDREASSEN AK, ARORA S, et al. Acute renal failure early after heart transplantation: risk factors and clinical consequences[J]. Clin Transplant, 2010, 24(6): E207-E213.
[DOI]
|
[5] |
JOKINEN JJ, TIKKANEN J, KUKKONEN S, et al. Natural course and risk factors for impaired renal function during the first year after heart transplantation[J]. J Heart Lung Transplant, 2010, 29(6): 633-640.
[DOI]
|
[6] |
OJO AO, HELD PJ, PORT FK, et al. Chronic renal failure after transplantation of a nonrenal organ[J]. N Engl J Med, 2003, 349(10): 931-940.
[DOI]
|
[7] |
WANG TJ, LIN CH, WEI HJ, et al. Long-term outcomes and risk factors of renal failure requiring dialysis after heart transplantation: a nationwide cohort study[J]. J Clin Med, 2020, 9(8): 2455.
[DOI]
|
[8] |
PERNER A, PROWLE J, JOANNIDIS M, et al. Fluid management in acute kidney injury[J]. Intensive Care Med, 2017, 43(6): 807-815.
[DOI]
|
[9] |
HEUNG M, STEFFICK DE, ZIVIN K, et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of veterans health administration data[J]. Am J Kidney Dis, 2016, 67(5): 742-752.
[DOI]
|
[10] |
ANON. Chronic kidney disease: refining diagnosis and management[J]. Lancet, 2014, 384(9941): 378.
|
[11] |
黄洁. 心脏移植免疫抑制诱导和维持治疗[J]. 中华移植杂志(电子版), 2018, 12: 49-54. [DOI]
|
[12] |
HAASE M, BELLOMO R, STORY D, et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury[J]. Nephrol Dial Transplant, 2012, 27(1): 153-160.
[DOI]
|
[13] |
CHEUNGPASITPORN W, THONGPRAYOON C, KITTANAMONGKOLCHAI W, et al. Comparison of renal outcomes in off-pump versus on-pump coronary artery bypass grafting: a systematic review and meta-analysis of randomized controlled trials[J]. Nephrology (Carlton), 2015, 20(10): 727-735.
[DOI]
|
[14] |
WANG Y, BELLOMO R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment[J]. Nat Rev Nephrol, 2017, 13(11): 697-711.
[DOI]
|
[15] |
BILLINGS FTT, YU C, BYRNE JG, et al. Heme oxygenase-1 and acute kidney injury following cardiac surgery[J]. Cardiorenal Med, 2014, 4(1): 12-21.
[DOI]
|
[16] |
DHALLA NS, ELMOSELHI AB, HATA T, et al. Status of myocardial antioxidants in ischemia-reperfusion injury[J]. Cardiovasc Res, 2000, 47(3): 446-456.
[DOI]
|
[17] |
VERMEULEN WINDSANT IC, DE WIT NC, SERTORIO JT, et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage[J]. Front Physiol, 2014, 5: 340.
|
[18] |
LIU D, LIU B, LIANG Z, et al. Acute kidney injury following cardiopulmonary bypass: a challenging picture[J]. Oxid Med Cell Longev, 2021, 2021: 8873581.
|
[19] |
MAGRUDER JT, DUNGAN SP, GRIMM JC, et al. Nadir oxygen delivery on bypass and hypotension increase acute kidney injury risk after cardiac operations[J]. Ann Thorac Surg, 2015, 100(5): 1697-1703.
[DOI]
|
[20] |
MUKAIDA H, MATSUSHITA S, YAMAMOTO T, et al. Oxygen delivery-guided perfusion for the prevention of acute kidney injury: a randomized controlled trial[J]. J Thorac Cardiovasc Surg, 2023, 165(2): 750-760.e5.
[DOI]
|
[21] |
RANUCCI M, JOHNSON I, WILLCOX T, et al. Goal-directed perfusion to reduce acute kidney injury: a randomized trial[J]. J Thorac Cardiovasc Surg, 2018, 156(5): 1918-27.e2.
[DOI]
|
[22] |
TINMOUTH A, FERGUSSON D, YEE IC, et al. Clinical consequences of red cell storage in the critically ill[J]. Transfusion, 2006, 46(11): 2014-2027.
[DOI]
|
[23] |
BAEK JH, D'AGNILLO F, VALLELIAN F, et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy[J]. J Clin Invest, 2012, 122(4): 1444-1458.
[DOI]
|
[24] |
HOD EA, ZHANG N, SOKOL SA, et al. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation[J]. Blood, 2010, 115(21): 4284-4292.
[DOI]
|
[25] |
PATEL NN, LIN H, JONES C, et al. Interactions of cardiopulmonary bypass and erythrocyte transfusion in the pathogenesis of pulmonary dysfunction in Swine[J]. Anesthesiology, 2013, 119(2): 365-378.
[DOI]
|
[26] |
CORTÉS-PUCH I, WANG D, SUN J, et al. Washing older blood units before transfusion reduces plasma iron and improves outcomes in experimental canine pneumonia[J]. Blood, 2014, 123(9): 1403-1411.
[DOI]
|
[27] |
WOZNIAK MJ, SULLO N, QURESHI S, et al. Randomized trial of red cell washing for the prevention of transfusion-associated organ injury in cardiac surgery[J]. Br J Anaesth, 2017, 118(5): 689-698.
[DOI]
|
[28] |
SCHOOLWERTH AC, SICA DA, BALLERMANN BJ, et al. Renal considerations in angiotensin converting enzyme inhibitor therapy: a statement for healthcare professionals from the Council on the Kidney in Cardiovascular Disease and the Council for High Blood Pressure Research of the American Heart Association[J]. Circulation, 2001, 104(16): 1985-1991.
[DOI]
|
[29] |
BENEDETTO U, MELINA G, CAPUANO F, et al. Preoperative angiotensin-converting enzyme inhibitors protect myocardium from ischemia during coronary artery bypass graft surgery[J]. J Cardiovasc Med (Hagerstown), 2008, 9(11): 1098-1103.
[DOI]
|
[30] |
BARODKA V, SILVESTRY S, ZHAO N, et al. Preoperative renin-angiotensin system inhibitors protect renal function in aging patients undergoing cardiac surgery[J]. J Surg Res, 2011, 167(2): e63-e69.
[DOI]
|
[31] |
BENEDETTO U, SCIARRETTA S, ROSCITANO A, et al. Preoperative Angiotensin-converting enzyme inhibitors and acute kidney injury after coronary artery bypass grafting[J]. Ann Thorac Surg, 2008, 86(4): 1160-1165.
[DOI]
|
[32] |
CHOU YH, HUANG TM, WU VC, et al. Associations between preoperative continuation of renin-angiotensin system inhibitor and cardiac surgery-associated acute kidney injury: a propensity score-matching analysis[J]. J Nephrol, 2019, 32(6): 957-966.
[DOI]
|
[33] |
OUZOUNIAN M, BUTH KJ, VALEEVA L, et al. Impact of preoperative angiotensin-converting enzyme inhibitor use on clinical outcomes after cardiac surgery[J]. Ann Thorac Surg, 2012, 93(2): 559-564.
[DOI]
|