文章快速检索     高级检索
   复旦学报(医学版)  2023, Vol. 50 Issue (3): 462-466      DOI: 10.3969/j.issn.1672-8467.2023.03.020
0
Contents            PDF            Abstract             Full text             Fig/Tab
放射性肺损伤中细胞死亡方式的研究进展
李轩 , 乔田奎     
复旦大学附属金山医院肿瘤中心 上海 201508
摘要:放射性肺损伤(radiation-induced lung injury,RILI)的发病率高,防治困难,细胞死亡是其发生过程中关键的病理过程。电离辐射直接损伤细胞DNA造成的细胞凋亡被认为是RILI中细胞死亡的主要方式,通过P62-Keap1-NRF2信号通路调控细胞的铁死亡在RILI的发生发展过程中发挥作用。射线可以诱导细胞形成经典炎性小体,引起细胞自身焦亡,导致RILI。这些新发现都为RILI新药开发提供了新的思路。
关键词放射性肺损伤(RILI)    细胞凋亡    细胞铁死亡    细胞焦亡    
Research progress of cell death in radiation-induced lung injury
LI Xuan , QIAO Tian-kui     
Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
Abstract: Radiation-induced lung injury (RILI) is one of the common side effects of radiotherapy for lung cancer. Cell death is an important pathological process in RILI. Apoptosis induced by single or double strands breaks of DNA, which induced by ionizing radiation is the main mode of cell death in RILI. Through P62-Keap1-NRF2 signaling pathway, the ferroptosis of cells is regulated, which also plays a role in the occurrence and development of RILI. X-ray can also induce form classic inflammatory corpuscles to cells, which can induce their own cells to pyroptosis and cause RILI. All of these provide new ideas for the development of new drugs for RILI.
Key words: radiation-induced lung injury (RILI)    apoptosis    ferroptosis    pyroptosis    

放射性肺损伤(radiation-induced lung injury,RILI)是肺癌患者放射治疗后的常见并发症,文献报道其发生率为16.7%~50.3%[1]。目前临床尚无理想的针对RILI的治疗策略和药物,通常于早期大量激素联合广谱抗生素治疗,但药物不良反应显著[2]。而对于晚期RILI,放射性肺纤维化形成,纤维化一般不可逆转,严重损害患者肺功能,至今仍无有效的预防和治疗措施。研究RILI发病机制对于防治RILI新药的开发具有重要意义。细胞死亡是机体的一项基本生理过程,在RILI中研究细胞死亡机制具有重要的意义。目前已证实电离辐射可诱导细胞凋亡、铁死亡、细胞焦亡等[3-5],针对RILI中细胞死亡方式和机制的研究,可能为RILI防治药物的开发提供新靶点和新视角。本文将对RILI中细胞死亡方式和相关机制进行综述。

RILI的发生机制  RILI的发生是一个复杂的过程,多种炎性细胞和细胞因子参与其中,其中多种因子和细胞在肺炎渗出和肺纤维形成中起关键作用[6]

RILI的发病机制尚不明确,目前研究较多的是炎性细胞和细胞因子级联触发理论[7]。放射线可直接或间接损伤肺泡上皮细胞、肺血管内皮细胞等,并在局部聚集大量炎症细胞,产生多种与炎性渗出、血管破坏、纤维化形成等相关的因子;同时与之相关的炎性或纤维化的信号通路被大量激活,进一步促进机体损伤反应机制启动,炎性细胞浸润导致炎症发生、纤维化形成、细胞外基质出现代谢紊乱、异常蓄积等,更进一步引起细胞因子释放,最终导致不可逆转的肺损伤[8-9]

针对RILI的发生机制,研究较为广泛的是活性氧(reactive oxygen species,ROS)理论。近年来大量研究表明,ROS在RILI中发挥重要作用。放射线作用于肺组织后,电离肺组织中的水分子可导致ROS爆发性生成[10]。瞬间生成的大量ROS不仅直接损伤肺组织实质细胞,还同时激活机体炎性细胞系统。当肺组织中生成的ROS超过机体抗氧化体系的清除能力时,最终会引起RILI[11]。ROS增加是肺损伤病因学中非常重要的一环[12]

RILI中的细胞死亡方式  细胞死亡对发育和调节体内稳态具有重要作用,是一种基础性细胞应答。早在20世纪60年代中期就有学者开始对细胞死亡机制进行研究[13-14],曾经认为细胞死亡的发生是两种不同细胞进程(程序性细胞死亡-细胞凋亡和不受控制的细胞死亡-坏死)的结果之一。近年来越来越多的细胞死亡方式被发现,提示细胞可以通过多种不同的途径发生死亡[15]。肺泡上皮细胞死亡是RILI发生过程中的重要病理过程,然而目前的研究主要集中在细胞因子及ROS损伤学说,对于RILI中细胞死亡方式及其机制的研究尚不多见。

细胞凋亡  传统观点认为,电离辐射的主要靶点在细胞核内的DNA分子,由DNA损伤产生的单链断裂和双链断裂所诱发的细胞凋亡是辐射诱导细胞死亡的主要途径[16-17]。细胞凋亡是最早被发现的程序性细胞死亡,其发生受机体遗传物质所控制,是机体调节自身细胞稳态的一种基本机制[18]。通过动物实验进一步证明,细胞凋亡在RILI中起重要作用,细胞凋亡与放射剂量呈正相关[19]

机体主要通过外源性和内源性方式引发细胞凋亡[20]。细胞表面死亡受体属于肿瘤坏死因子受体家族,当机体激活外源性死亡形式时,外源性死亡配体与细胞表面的死亡受体相结合,从而激活死亡受体表达,促进细胞内衔接蛋白聚集,随后衔接蛋白与Procaspase-8相互作用增强,自身水解酶剪切Procaspase-8为Caspase-8,激活后的Caspase-8介导细胞发生凋亡。内源性细胞凋亡在机体受到应激刺激、生存信号及激素消退引起的DNA损伤时发生。内源性细胞凋亡可调节线粒体膜的活性,释放出细胞色素C和多种细胞凋亡因子,继而促进半胱氨酸蛋白酶衔接分子-凋亡蛋白酶激活因子-1和凋亡起始酶Procaspase-9的聚集,形成凋亡复合物,同时Procaspase-9通过自身蛋白水解剪切成Caspase-9,最终引起细胞凋亡[21]。外源性和内源性方式相互作用,紧密连接。在RILI中,放射线直接损伤细胞DNA,从而激活内源性细胞凋亡,随着炎性细胞和细胞因子的大量聚集,外源性细胞凋亡同样被激活,在RILI发生过程中两种基本凋亡形式都被激活,并引起肺泡上皮细胞凋亡[16-17]

电离辐射直接破坏细胞的DNA结构,导致DNA双链断裂,发生细胞凋亡,诱发RILI。研究表明,骨髓间充质干细胞通过高效修复放射线导致的DNA双链损伤,抑制细胞凋亡发生,从而改善RILI[22]。HMG-CoA还原酶抑制剂(他汀类药物)可以通过抑制Rho/ROCK通路抑制放射性肺纤维化的进展,Ziegler等[23]研究认为洛伐他汀可保护肺组织免受放疗诱导的凋亡。

细胞铁死亡  铁死亡是一种新发现的以细胞内铁依赖性ROS异常增高导致氧化还原稳态失衡为特征的细胞死亡方式[24]。铁死亡是一种细胞过氧化性死亡,细胞内脂质ROS大量生成,严重破坏细胞结构,引发铁死亡。

铁死亡与恶性肿瘤、肾损伤、阿尔兹海默病等多种疾病的发生关系密切[25-27]。铁死亡在不同疾病中受调控的信号通路不尽相同,但都是通过直接或间接作用于谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4),导致细胞内脂质ROS增加,损伤细胞结构,最终引起铁死亡[28-29]。脂质ROS造成的细胞损伤是铁死亡发生所必需的环节。

GPXs家族涉及GPX1~GPX8[30],GPX4被认为是调节铁死亡的重要关键酶,其表达水平下降,通常被认为是检测铁死亡发生的标志[31]。电离辐射作用于小鼠肺组织后,血清中ROS升高明显,细胞氧化还原稳态失衡[32]。研究发现,RILI小鼠肺组织中铁死亡的重要标志蛋白GPX4的表达下降明显,同时受损肺泡上皮细胞内线粒体呈明显皱缩,膜密度增加,这与发生铁死亡特异性线粒体变化特征相同,铁死亡特异性抑制剂可以降低小鼠血清中TGF-β1水平,改善放射性肺纤维化,提示铁死亡在急性放射性肺炎和慢性肺纤维化中都发挥重要作用[33-34]

核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,NRF2)是调节细胞内源性抗氧化防御体系中最关键的因子[35]。大量ROS生成时,细胞质内Kelch样环氧氯丙烷相关蛋白-1(kelch sample related protein-1,Keap1)表达抑制,NRF2-Keap1解离,NRF2进入核内表达上调,抗氧化蛋白生成增多,最终降低ROS水平,减少氧化应激损伤[36-37]。NRF2通路在RILI中具有重要的抗氧化作用,研究显示NRF2缺乏会明显减少RILI中肺泡上皮细胞数量,降低RILI小鼠寿命[38-39]。NRF2信号通路也有调控铁死亡发生的作用,激活P62-Keap1-NRF2通路能够抑制肝癌细胞中铁死亡的发生[40-41]。我们研究发现射线导致细胞内ROS水平升高,介导肺泡上皮细胞发生铁死亡,从而引起RILI。在RILI中,通过激活P62表达上调,下调了Keap1表达水平,可降低Keap1对NRF2的持续降解,NRF2转入核内表达,抗氧化蛋白生成增多,ROS水平下降,最终抑制铁死亡发生[42]

体内研究发现,敲除NRF2基因可加重RILI炎症及氧化损伤,过表达NRF2则阻碍肺纤维化进展,对RILI有一定保护作用[43]。因此,通过NRF2/GPX4调控铁死亡、缓解氧化应激是防护RILI的新靶点。

细胞焦亡  细胞焦亡是一种新发现的通过炎性反应介导的特异性细胞死亡方式[44-45]。外界因素损伤细胞DNA后,细胞核固缩,细胞膜溶解,细胞的内容物及IL进一步释放,炎症反应加重,导致细胞焦亡。在细胞焦亡的发生过程中,通过释放炎性因子,促进炎性细胞进一步聚集,进而产生更多因子,最终引发机体炎性瀑布反应[46]

射线可以导致体内的ROS水平升高,激活机体应激状态,促进硫氧还原蛋白-硫氧还原相互作用蛋白复合物解离,硫氧还原相互作用蛋白的生成增多,激活NLRP3炎性小体,从而引起细胞焦亡[47]。多项研究表明NLRP3炎性小体在辐射引起的肝脏损伤及肌肉损伤中发挥着重要作用[48-49]。活化的NLRP3经过一系列的病理生理途径使细胞膜形成裂孔,释放IL-1β和IL-18到细胞外,完成焦亡过程[44-50]

经典炎症小体形式是细胞诱导自身发生焦亡的主要形式。在机体细胞受到炎性刺激时,细胞自身激活细胞内半胱氨酸蛋白酶-1前体(Procaspase-1),Procaspase-1通过自身水解酶水解形成Caspase-1,Caspase-1的形成促进区域蛋白及热蛋白结构域聚集,从而链接凋亡相关斑点样蛋白和模式识别受体、黑色素瘤缺乏因子2等组合成一个高分子复合物,这个复合物就是依赖Caspase-1的炎症小体[51]。Caspase-1的炎症小体可以反过来促进Procaspase-1的水解,再次形成激活态的Caspase-1,从而切割GSDMD底物使细胞膜穿孔并促进IL-1β和IL-18前体成熟,引起细胞膜溶解分裂,最终导致细胞焦亡,这种途径是细胞焦亡发生的主要形式。经典炎症小体是导致细胞焦亡发生的关键,细胞焦亡可能通过经典炎性小体形式参与了RILI的发生[52]

Pyroptosis的特征是外来病原体刺激机体产生炎性体,激活NLRP3并进一步刺激Caspase-1和Caspase-4/5/11的激活,释放大量炎性细胞因子和炎性细胞内容物[53],产生促炎信号,快速启动机体天然免疫引起炎性反应,最终使细胞发生渗透性崩解。体内研究发现,细胞焦亡相关的NLRP3和Caspase-1在RILI小鼠的肺组织中表达明显升高,IL-1β、IL-18和炎性因子也升高明显,提示细胞焦亡在RILI过程中的作用[54]。通过研究抑制细胞焦亡的作用或可为防治RILI的药物研制提供参考。

结语  随着新的细胞死亡方式不断被发现,也启发了对RILI新的认识。放射线导致细胞死亡的经典方式是细胞凋亡,铁死亡和细胞焦亡也参与了RILI中的细胞死亡。未来有望在细胞死亡方面找到针对RILI的突破口,为临床RILI新的治疗策略和新药的开发提供依据。

作者贡献声明  李轩  资料收集,论文构思和撰写。乔田奎  论文构思和修订。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
BERMAN AT, TUROWSKI J, MICK R. Dietary flaxseed in non-small cell lung cancer patients receiving chemoradiation[J]. J Pulm Respir Med, 2013, 3(4): 154.
[2]
ABID SH, MALHOTRA V, PERRY MC. Radiation-induced andchemotherapy-induced pulmonary injury[J]. Curr Opin Oncol, 2001, 13(4): 242. [DOI]
[3]
YAN ZY, AO XK, LIANG XX, et al. Transcriptional inhibition of miR-486-3p by BCL6 upregulates Snail and induces epithelial-mesenchymal transition during radiation-induced pulmonary fibrosis[J]. Respir Res, 2022, 23(1): 104. [DOI]
[4]
LIU X, WANG L, XING Q, et al. Sevoflurane inhibits ferroptosis: a new mechanism to explain its protective role against lipopolysaccharide-induced acute lung injury[J]. Life Sci, 2021, 275: 119391. [DOI]
[5]
LIU X, ZHANG JQ, XIE W. The role of ferroptosis in acute lung injury[J]. Mol Cell Biochem, 2022, 477(5): 1453-1461. [DOI]
[6]
TROTT KR, HERRMANN T, KASPER M. Target cells in radiation pneumopathy[J]. Int J Radiat Oncol Biol Phys, 2004, 58(2): 463-469. [DOI]
[7]
KIMK S, JUNG H, SHIN IK, et al. Induction of interleukin-1beta (1L-1 β) is a critical component of lung inflammation during influenza A(H1N1) virus infection[J]. J Med Virol, 2015, 87(7): 1104-1112. [DOI]
[8]
WEBER A, WASILIEW P, KRACHT M. Interleukin-1 (1L-1) pathway[J]. Sci Signal, 2013, 3(105): 101.
[9]
GHOSH S, HAYDEN MS. Celebrating 25 years of NF-κB reaearch[J]. Immunol Rev, 2012, 246(1): 5-13. [DOI]
[10]
RILEY PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation[J]. Int J Radiat Biol, 1994, 65(1): 27-33. [DOI]
[11]
WARD PA. Oxidative stress: acute and progressive lung injury[J]. Ann NY Acad Sci, 2010, 1203: 53-59. [DOI]
[12]
RAHMAN I, MAC NEE W. Antioxidant pharmacological therapies for COPD[J]. Curr Opin Pharmacol, 2012, 12(3): 256-265. [DOI]
[13]
KERR JF. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes[J]. J Pathol Bacteriol, 1965, 90(2): 419-435. [DOI]
[14]
LOCKSHIN RA, WILLIAMS CM. Programmed cell death--I. cytology of degeneration in the intersegmental muscles of the pernyi silkmoth[J]. J Insect Physiol, 1965, 11(1): 23-33.
[15]
D'ARCY MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592. [DOI]
[16]
OGUR A, OOWASA S, KON Y. Redox regulation in radiation-induced cytochrome C release from mitochondria of human lung carcinoma A549 cells[J]. Cancer Lett, 2009, 277(1): 64-71. [DOI]
[17]
HAIMOVITZ-FRIEDMAN A, KAN CC, EHLEITER D. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis[J]. J Exp Med, 1994, 180(2): 525-535. [DOI]
[18]
THOPAON CB. Apoptosis in the pathogenesis and treatment of disease[J]. Science, 1995, 267(5203): 1442-1462.
[19]
ADAMSONI YR, HEDGECOCK C, BOWDENH DH. Epithelial cell-fibroblast interaction lung injury and repair[J]. Am J Pathol, 1990, 137(2): 385.
[20]
ELMOREl S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35(4): 495-516. [DOI]
[21]
GALANI V, TATSAKI E, BAI M, et al. The role of apoptosis in the pathophysiology of acute respiratory distress syndrome (ARDS): an up-to-date cell-specific review[J]. Pathol ResPract, 2010, 206(3): 145-150.
[22]
STELLA A, HUI Y, TERESA G, et al. Cadherin-11 regulates both mesenchymal stem cell differentiation into smooth muscle cells and the development of contractile function in vivo[J]. J Cell Sci, 2014, 127(Pt 12): 2627-2638.
[23]
VERENA Z, CHRISTIAN H, LOANNIS S, et al. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation[J]. Cell Death Dis, 2017, 8(8): e2978. [DOI]
[24]
DIXON SJ, LEMBERG KM, STOCKWELL BR, et al. Ferroptosis: an iron-dependent from of nonapoptotic cell death[J]. Cell, 2012, 149: 1060-1072. [DOI]
[25]
MA S, HENSON ES, CHEN Y. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7(7): 2307. [DOI]
[26]
GUINEY SJ, ADLARD PA, BUSH AI. Ferroptosis and cell death mechanisms in Parkinson's disease[J]. Neurochem Int, 2017, 104(1): 34-48.
[27]
SKOUTA R, DIXON SJ, WANG J. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models[J]. J Am Chem Soc, 2014, 136(12): 4551-4556. [DOI]
[28]
SEHM T, RAUH M, WIENDIECK K. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis[J]. Oncotarget, 2016, 7(46): 74630-74647. [DOI]
[29]
LACHAIER E, LOUANDRE C, GODIN C. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors[J]. Anticancer Res, 2014, 34(11): 6417-6422.
[30]
BRIGELIUS-FLOHEl R, MAIORION M. Glutathione peroxidases[J]. Biochim Biophys Acta, 2013, 1830(5): 3289-3303. [DOI]
[31]
YANG WS, SRIRAMMARATNAM R, WELSCH ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156: 317-331. [DOI]
[32]
LI X, XU GX, QIAO TK. Effects of CPG ologodeoxynucleotide 1826 on acute radiation-induced lung injury in mice[J]. Biol Res, 2016, 49: 8. [DOI]
[33]
LI X, ZHUANG XB, QIAO TK. Role of ferroptosis in the process of acute radiation-induced lung injury in mice[J]. BBRC, 2019, 519(2): 240-245.
[34]
LI X, DUAN LJ, YUAN SJ, et al. Ferroptosis inhibitor alleviates radiaion-induced lung fibrosis (RILF) via down-regulation of TGF-β1[J]. J Inflamm (Lond), 2019, 16: 11. [DOI]
[35]
SPORN MB, LIBY KT. NRF2 and cancer: the good, the bad and the importance of context[J]. Nat Rev Cancer, 2012, 12(8): 564-571. [DOI]
[36]
HAYES JD, DINKOVA-KOSTOVA AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism[J]. Trends Biochem Sci, 2014, 39(4): 199-218. [DOI]
[37]
NUMAZAWA S, YOSHIDA T. Nrf2-dependent gene expressions: a molecular toxicological aspect[J]. J Toxicol Sci, 2004, 29(2): 81-89. [DOI]
[38]
TRAVER G, MONT S, GIUS D, et al. Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung[J]. Free Radiat Biol Med, 2017, 112: 578-586. [DOI]
[39]
TRAVIS EL, RACHAKONDA G, ZHOU X, et al. NRF2 deficiency reduces life span of mice administered thoracic irradiation[J]. Free Radiat Biol Med, 2011, 51: 1175-1183. [DOI]
[40]
SUN X, OU Z, CHEN R. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cell[J]. Hepatology, 2016, 63(1): 173-184. [DOI]
[41]
SHIN D, KIME H, LEE J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibition-induced ferroptosis in head and neck cancer[J]. Free Radic Bio Med, 2018, 129(129): 454-462.
[42]
LI X, CHEN JY, YUAN SJ, et al. Activation of the P62-Keap1-NRF2 pathway protects against ferroptosis in radiation-induced lung injury[J]. Oxid Med Cell Longev, 2022, 2022: 8973509.
[43]
TIAN X, WANG F, LUO Y, et al. Protective role of nuclear factor erythroid 2-related factor 2 against radiation-induced lung injury and inflammation[J]. Front Oncol, 2018, 8: 542.
[44]
SHI J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory Caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575): 660-665.
[45]
KAYAGAKI N, STOWE IB, LEE BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling[J]. Nature, 2015, 526(7575): 666-671.
[46]
YUAN R, FAN H, CHENG S, et al. Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage[J]. Biomed Pharmacother, 2017, 93: 308-315.
[47]
ZHOU R, TARDIVEL A, THORENS B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol, 2010, 11(2): 136-140.
[48]
CHEN YL, XU G, LING X, et al. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury[J]. Am J Transl Res, 2016, 8(12): 5685-5695.
[49]
HALDAR S, DRU C, CHOUDHURY D, et al. Inflammation and pyroptosis mediate muscle expansion in an interleukin-1beta (IL-1beta)-dependent manner[J]. J Biol Chem, 2015, 290(10): 6574-6583.
[50]
SHI J, ZHAO Y, WANG Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS[J]. Nature, 2014, 514(7521): 187-192.
[51]
MARIANTHASAN S, WEISS DS, NEWTON K, et al. Cryopyrin activates the inflammasome in response to toxins and Atp[J]. Nature, 2006, 440(7081): 228-232.
[52]
WU X, JI H, WANG Y, et al. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis[J]. Oxid Med Cell Longev, 2019, 2019: 4087298.
[53]
YUAN R, FAN H, CHENG S, et al. Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage[J]. Biomed Pharmacother, 2017, 93: 308-315.
[54]
KARMAKAR M, KATSNELSON M, MALAK HA, et al. Neutrophil IL-1beta processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+efflux[J]. J Immunol, 2015, 194(4): 1763-1775.

文章信息

李轩, 乔田奎
LI Xuan, QIAO Tian-kui
放射性肺损伤中细胞死亡方式的研究进展
Research progress of cell death in radiation-induced lung injury
复旦学报医学版, 2023, 50(3): 462-466.
Fudan University Journal of Medical Sciences, 2023, 50(3): 462-466.
Corresponding author
E-mail: qiaotiankui@fudan.edu.cn.
基金项目
上海市科委科技计划项目(201409001100)
Foundation item
This work was supported by the Science and Technology Planning Project of Science and Technology Commission of Shanghai Municipality (201409001100)

工作空间