文章快速检索     高级检索
   复旦学报(医学版)  2023, Vol. 50 Issue (3): 390-397      DOI: 10.3969/j.issn.1672-8467.2023.03.010
0
Contents            PDF            Abstract             Full text             Fig/Tab
DARS2在非小细胞肺癌中的表达及其对细胞增殖和迁移的影响
艾尼瓦尔·肉孜1,2,3 , 韩林晓1,2,3 , 吴圆圆1,2,3 , 朱文思1,2,3 , 刘静4 , 刘尽国5 , 周建1,2,3     
1. 复旦大学附属中山医院呼吸与危重症医学科 上海 200032;
2. 上海呼吸物联网医学工程技术研究中心 上海 200032;
3. 上海市呼吸病研究所 上海 200032;
4. 青岛大学青岛医学院附属烟台毓璜顶医院病理科 烟台 264000;
5. 同济大学附属第十人民医院肿瘤科-同济大学癌症中心 上海 200072
摘要目的 探究线粒体天冬氨酰-tRNA合成酶2(aspartyl-tRNA synthetase 2,mitochondrial,DARS2)在非小细胞肺癌(non-small cell lung cancer,NSCLC)中的表达及生物学意义。方法 采用多种数据库分析DARS2在NSCLC的两种亚型肺腺癌(lung adenocarcinoma,LUAD)和肺鳞癌(lung squamous cell carcinoma,LUSC)中的表达水平、预后价值、临床病理分期相关性、突变及甲基化水平和富集通路。通过划痕实验和CCK-8实验进一步分析DARS2对NSCLC细胞增殖和迁移能力的影响。结果 通过GEPIA、GEO及HPA数据库分析发现,DARS2 mRNA和蛋白质表达水平在LUAD与LUSC中均显著上调,并与LUAD病理分期呈正相关。生存分析结果表明,DARS2过表达可显著缩短LUAD患者生存期。cBioPortal分析结果显示,DARS2在LUAD与LUSC中变异率分别为16%和18%。UALCAN数据库甲基化分析结果显示,DARS2启动子区域甲基化水平在LUAD中显著降低,而在LUSC中显著升高。Metascape数据库富集分析结果显示,与DARS2相关的基因在LUAD和LUSC中均主要在细胞周期通路高度富集。划痕实验和CCK-8实验结果显示,敲低DARS2能显著抑制H1299细胞增殖和迁移能力。结论 DARS2在LUAD与LUSC中均过表达,其可能以参与调控细胞周期通路方式促进NSCLC细胞增殖和迁移。
关键词肺腺癌(LUAD)    肺鳞癌(LUSC)    天冬氨酰-tRNA合成酶2(DARS2)    增殖    迁移    细胞周期    
Expression of DARS2 in non-small cell lung cancer and its effect on proliferation and migration
ROUZI Ainiwaer1,2,3 , HAN Lin-xiao1,2,3 , WU Yuan-yuan1,2,3 , ZHU Wen-si1,2,3 , LIU Jing4 , LIU Jin-guo5 , ZHOU Jian1,2,3     
1. Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
2. Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai 200032, China;
3. Shanghai Respiratory Research Institute, Shanghai 200032, China;
4. Department of Pathology, Yantai Yuhuangding Hospital, Qingdao Medical College, Qingdao University, Yantai 264000, Shandong Province, China;
5. Department of Oncology, Tenth People's Hospital of Tongji University-Tongji University Cancer Center, Shanghai 200072, China
Abstract: Objective To investigate the expression level and biological significance of aspartyl-tRNA synthetase 2, mitochondrial (DARS2) in non-small cell lung cancer (NSCLC). Methods DARS2 expression levels, prognostic value, clinicopathological staging correlation, mutation and methylation levels, and enrichment pathways in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), the two major subtypes of NSCLC, were investigated using various databases. On this basis, the effect of DARS2 on the proliferation and migration ability of NSCLC cells was further analyzed by scratch assay and CCK-8 assay. Results GEPIA, GEO, and HPA database analysis results showed that DARS2 mRNA and protein expression levels were significantly upregulated in LUAD and LUSC, and DARS2 mRNA expression levels were positively correlated with pathological stage in LUAD. Survival analysis showed that patients with high DARS2 expression in LUAD had shorter survival times. cBioPortal analysis showed that DARS2 variability was 16% in LUAD and 18% in LUSC, respectively. UALCAN database methylation analysis showed that the methylation level of the DARS2 promoter region was significantly lower in LUAD and considerably higher in LUSC. Metascape database results showed that DARS2-related genes were highly enriched in both LUAD and LUSC, mainly in the cell cycle pathway. The results of scratch and CCK-8 assays showed that the knockdown of DARS2 significantly inhibited the proliferation and migration ability of H1299 cells. Conclusion DARS2 is overexpressed in LUAD and LUSC and may promote the proliferation and migration of NSCLC cells by participating in cell cycle regulation.
Key words: lung adenocarcinoma (LUAD)    lung squamous cell carcinoma (LUSC)    aspartyl-tRNA synthetase 2, mitochondrial (DARS2)    proliferation    migration    cell cycle    

肺癌是发病率高、预后差的恶性肿瘤,在2022年最常见的癌症中,前列腺癌、肺癌和大肠癌占男性新增病例的48%,乳腺癌、肺癌和大肠癌占女性新增病例的51%[1]。在肺癌的两种类型中,小细胞肺癌(small cell lung cancer,SCLC)的发病率低于非小细胞肺癌(non-small cell lung cancer,NSCLC)。NSCLC进一步划分为肺腺癌(lung adenocarcinoma,LUAD)和肺鳞癌(lung squamous cell carcinoma,LUSC),其中LUAD是最常见的亚型。NSCLC早期症状不明显,大多患者在晚期才被诊断出来,因此迫切需要可靠的生物标志物来评估诊断和监测进展[2]

氨基酰-tRNA合成酶(aminoacyl-tRNA synthetase,AARS)在生物体内普遍存在,其主要功能是催化氨基酸与相应的tRNA之间发生酯化反应形成氨基酰-tRNA,为蛋白质生物合成提供原料,确保遗传信息准确传递[3]。线粒体天冬氨酰-tRNA合成酶2(aspartyl-tRNA synthetase 2,mitochondrial,DARS2)负责翻译启动及蛋白质合成[4],其突变多与线粒体疾病的发生发展密切相关。已有文献报道DARS2在肺癌、胰腺癌和膀胱癌的预后评估模型中表现出良好预后预测意义[5-8],这些模型以RNA结合蛋白(RNA binding protein,RBP)为基础构建。RBP对转录后调控至关重要,其表达异常是促癌网络的重要一环[9]。本研究选取NSCLC的两个不同亚型,采用多种数据库比较和细胞功能实验相结合的方法,以期揭示DARS2在NSCLC发生发展中的作用。

材料和方法

细胞培养和转染  复旦大学附属中山医院实验研究中心负责培养细胞,培养基和血清以9∶1制备成完全培养基,在25 T培养瓶中正常培养,并储存于标准培养箱。取40%的H1299细胞铺于6孔板上,次日每孔添加0.5 mL感染增强液、0.5 mL培养基、1 μL聚凝胺和14 μL shDARS2慢病毒液进行转染。

Western blot实验  取适当RIPA裂解液,使用前添加蛋白酶抑制剂,6孔板每孔加入80~100 μL裂解液,吹打数下,促进细胞裂解。在冰上裂解15 min后枪头刮至EP管,4 ℃下18 407×g离心10 min,取上清。BCA法定量蛋白浓度,5×上样缓冲液按4∶1稀释,后续以电泳转膜曝光等标准流程进行。

细胞实验  增殖实验:将慢病毒转染的H1299细胞以5×103/孔的密度接种至96孔板,在培养箱孵育72 h,每孔加入100 μL含有10 μL CCK-8试剂的培养基,继续孵育4 h,用多功能酶标仪检测吸光度,并评估对细胞增殖能力的影响。划痕实验:将慢病毒转染的H1299细胞接种于6孔板中直至长满,枪头垂直于6孔板底部划一条直线,PBS清洗后悬浮细胞,倒置显微镜在12 h和24 h时拍照记录划痕宽度,使用ImageJ软件分析划痕的相对宽度,并评估对细胞迁移能力的影响。

qRT-PCR实验  使用Trizol提取H1299细胞RNA,以10 μL为逆转录体系制备cDNA,加DEPC水5倍稀释。按照TAKARA试剂盒说明书,qRT-PCR按照10 μL体系预混并加样。DARS2正向引物序列:5'-AAGATGTGGTCCTACTAACTGC-3',反向引物序列:5'-TGTTTCTAGAAGGTCAG-CACAT-3'。

数据库分析  通过数据库分析DARS2在LUAD及LUSC中的相关生物信息学(表 1)。

表 1 相关数据库功能注释 Tab 1 Related database function notes
Database Function Website
GEPIA Gene expression profiling interactive analysis http://gepia.cancer-pku.cn
GEO Query and download experiments and curated gene expression profiles. https://www.ncbi.nlm.nih.gov/geo/
HPA Open access resource for human proteins https://www.proteinatlas.org
UALCAN Web resource for analyzing cancer OMICS data https://ualcan.path.uab.edu
cBioPortal Interactive exploration of multidimensional cancer genomics data sets https://www.cbioportal.org
Linkedomics Analyze and compare cancer multi-omics data within and across tumor types http://www.linkedomics.org/login.php
Metascape A gene annotation and analysis resource https://metascape.org/gp/index.html

统计学分析  使用GraphPadPrism Version 9.00软件进行统计分析,两组数据之间差异分析采用独立样本t检验,P < 0.05为差异有统计学意义。

结果

DARS2在NSCLC中表达及与NSCLC患者生存预后的关系  通过GEO (GSE19804、GSE18842和GSE21933)数据库分析发现,在NSCLC组织中DARS2 mRNA的表达水平均明显高于正常组织(P < 0.001,图 1A~C);GEPIA数据库结果进一步证实,在LUAD和LUSC组织中DARS2 mRNA的表达水平均显著上调(P < 0.001,图 1D)。在HPA数据库检索界面输入“DARS2”,并在“Tissue Atlas”和“Pathology Atlas”模块分别选择“Lung”和“Lung cancer”,生成正常肺组织、LUAD和LUSC组织中DARS2蛋白表达水平的免疫组化图(图 1E~G),结果显示DARS2蛋白在LUAD与LUSC组织中均高表达。GEPIA数据库病理分期分析结果显示,DARS2 mRNA表达水平在不同病理分期的LUAD组织中明显不同(P < 0.001,图 1H),且与LUAD的病理分期呈正相关。预后分析模块结果显示,以中位数为截断值,DARS2表达水平仅与LUAD患者总生存期呈负相关(P < 0.001,图 1J)。

A-D: DARS2 mRNA expression analysis in NSCLC and normal tissues in GEO (GSE19804, GSE18842 and GSE21933) and GEPIA; E-G: Representative IHC images of DARS2 expression of normal, LUAD and LUSC in HPA (HPA026506) database; H-I: Expression of DARS2 mRNA in different stages of LUAD and LUSC in GEPIA; J-K: Correlation between DARS2 expression and prognosis of LUAD and LUSC in GEPIA. 图 1 DARS2在NSCLC和正常组织中的表达与预后 Fig 1 Expression and prognosis of DARS2 in NSCLC and normal tissues

DARS2在NSCLC中的基因变异及甲基化水平分析  利用cBioPortal数据库分析DARS2在NSCLC中基因变异情况,结果显示:在503例LUAD患者中有81例(16%)发生基因变异,变异类型主要包括错义突变、基因扩增和mRNA高表达;在466例LUSC患者中有83例(18%)发生基因变异,变异类型主要包括错义突变、剪接突变、截短突变、结构变异、基因扩增和mRNA高表达(图 2A)。UALCAN数据库甲基化分析结果显示:在LUAD组织中,DARS2基因启动子甲基化水平明显降低(P=0.004 9,图 2B),而在LUSC组织中,DARS2基因启动子甲基化水平明显升高(P=0.020 6,图 2B)。

A: Alteration of DARS2 gene in LUAD and LUSC (cBioPortal); B: Promoter methylation level of DARS2 in LUAD and LUSC (UALCAN). 图 2 NSCLC中DARS2的基因变异和启动子甲基化改变 Fig 2 Genetic alteration and promoter methylation of DARS2 in NSCLC

DARS2敲低对H1299细胞增殖和迁移的影响  qRT-PCR实验结果表明,DARS2在LUAD细胞(H1299)中的表达量明显高于正常支气管上皮细胞(BEAS-2B和HBE)(P=0.02,图 3A),故选择在H1299细胞中敲低DARS2基因的表达并用qRT-PCR与Western blot检测转染效率(图 3B)。CCK-8实验结果显示,DARS2基因敲低组在培养72 h后OD值明显降低(P < 0.001,图 3C),与正常组相比增殖能力明显削弱。细胞划痕实验结果显示,敲低DARS2基因后12 h和24 h,H1299细胞的迁移能力均显著低于正常组(P < 0.001,图 3D)。这些结果表明DARS2表达水平下降有助于抑制LUAD细胞的增殖和迁移。

A: Expression level of DARS2 in cell lines identified by qRT-PCR; B: Transfection rate identified by qRT-PCR and Western blot; C-D: CCK-8 and wound healing were performed to identify the proliferation and migration rate after DARS2 knockdown in H1299 cells. 图 3 下调DARS2对NSCLC细胞增殖和迁移影响 Fig 3 Interference of DARS2 expression impaired proliferation and migration of NSCLC cells

DARS2在LUAD与LUSC中共表达基因分析  通过LinkedOmics数据库对DARS2在LUAD与LUSC中相关基因进行分析,结果显示:LUAD中有4 180和6 135个基因分别与DARS2表达呈正相关和负相关(图 4A),而LUSC中有3 767个和5 293个这样的基因(图 4B)。在LUAD和LUSC中,与DARS2正负相关性排名前50的基因如图 4C~4F所示。在LUAD中,DARS2的表达与NDUFS1(r=0.638 1)、UCHL5(r=0.629 8)和WDR12(r=0.619 2)等基因呈显著正相关,与LTC4S(r=‒0.491 0)、FCGBP(r=‒0.488 9)和TLR2(r=-0.486 6)等基因呈显著负相关。在LUSC中,DARS2的表达与CENPL(r=0.620 5)、FAM72D(r=0.607 2)和NUF2(r=0.605 6)等基因呈显著正相关,与RRAS(r=-0.445 7)、LDLRAD2 (r=‒0.441 6)、IL34 (r=‒0.441 0)等基因呈现显著负相关。使用Metascape数据库,参数模块选择种属“人类”(H. sapiens),列表中输入与DARS2正负相关性排名前100的基因,进行通路功能富集分析。结果显示,在LUAD中主要富集在ncRNA代谢、细胞周期和线粒体基因表达等环节(图 5A),在LUSC中主要富集在有丝分裂细胞周期、细胞周期和纺锤体组装等环节(图 5B)。这些结果提示DARS2可能通过参与调控细胞周期信号通路促进NSCLC进展。

A-B: Volcano map of the distribution of DARS2 co-expressed genes in LUAD and LUSC; C-F: Heat maps showed the top 50 significant genes positively or negatively correlated with DARS2 in LUAD (C-D) and LUSC (E-F), in which the blue part stands for positively correlated genes and the red part stands for negatively correlated genes (Linkedomics). 图 4 NSCLC中与DARS2共表达的基因 Fig 4 Genes in association with DARS2 in NSCLC
Metascape analyses of the top 100 genes positively or negatively correlated with DARS2 in LUAD (A) and LUSC (B). 图 5 相关基因富集分析 Fig 5 Enrichment analysis of correlated genes
讨论

我国统计结果显示,2020年全国新增肺癌诊断病例约82万例,相关死亡病例约71.5万例[10]。由于其复杂的生物过程且缺乏有效的生物标志物,肺癌患者的5年存活率较低(约20%)。AARS在生物体内广泛存在,其中37种AARS均由核基因组编码,主要参与细胞质和线粒体的蛋白质生物合成,此外还参与小分子代谢、细胞凋亡、肿瘤发生、组织发育、血管生成和免疫应答等[11]。研究结果表明,AARS的功能与癌症调控有关[12]。AARS通过调节肿瘤细胞生长、分化、细胞周期、细胞因子活性、RNA剪接、细胞黏附和血管生成等,在肿瘤发病机制中发挥重要作用。既往研究表明,异亮氨酰-tRNA合成酶2(isoleucyl-tRNA synthetase 2,IARS2)沉默可抑制A549和H1299细胞的活性,导致A549细胞的G0/G1停滞和线粒体凋亡,并通过AKT/MTOR途径调节肺癌细胞的增殖[13]。还有研究发现蛋氨酸-tRNA合成酶(methionyl-tRNA synthetase,MRS)在肺癌组织中的表达量增加且与细胞周期的进展密切相关[3]

DARS2属于AARS家族,组织特异性DARS2缺失导致线粒体功能紊乱,进而导致心肌和骨骼肌的线粒体呼吸功能缺失[14]。研究发现,DARS2与神经系统疾病发生发展密切相关[15-16],如其突变可致涉及脑干和脊髓的脑白质病,并伴随过量乳酸堆积。目前DARS2在癌症方面相关研究较少。在乙肝病毒感染所致的肝癌中,转录因子NFAT5的表达被该病毒抑制进而会导致DARS2的表达水平上升,肝癌细胞凋亡率下降[17]

本研究通过多种公共数据库进行比对分析,发现DARS2在NSCLC的两种亚型LUAD与LUSC中均高表达,且高表达DARS2的LUAD患者具有更短的生存期。为了探究DARS2在LUAD中生物学作用,构建了DARS2基因敲低的H1299细胞株,通过细胞增殖与划痕实验发现DARS2可以促进H1299细胞增殖迁移。通过cBioPortal数据库评估DARS2在肺癌中的变异模式,结果发现,DARS2在LUAD与LUSC中均发生了突变,错义突变是两者最普遍的突变模式。低甲基化作为一种刺激癌基因的机制,可促进肿瘤的发生,我们对DARS2进行了甲基化分析,与正常组织相比,在LUAD组织中DARS2表现出明显低甲基化。对与DARS2相关基因进行分析,Linkedomics显示LUAD中正相关性排名前3位的基因是NDUFS1UCHL5WDR12,LUSC中正相关性排名前3位的基因是CENPLFAM72DNUF2。NDUFS1是线粒体复合体Ⅰ的最大亚单位,先前研究显示NDUFS1是由2q33-miR-3130-5p轴靶向的一个潜在的肿瘤抑制因子,影响LUAD的侵袭性[18]。UCHL5在NSCLC组织中高表达,在LUAD细胞中敲除UCHL5能明显抑制细胞增殖并减少关键细胞周期蛋白的表达[19]WDR12是一个癌基因,在多种人类恶性肿瘤中过表达,其过表达与不良的预后相关[20]。敲除CENPL可明显抑制CDK2和CCNE2的表达,并诱导LUAD的G0/G1停滞和凋亡[21]。FAM72D是控制细胞增殖和生存的FOXM1转录因子网络的一部分[22]。敲除NUF2能抑制LUAD细胞的增殖、迁移、侵袭、上皮-间质转化和集落形成[23]。富集分析结果显示,在LUAD与LUSC中,与DARS2相关的基因在细胞周期通路高度集中。关于DARS2调控细胞周期,有研究结果指出,ADP-DnaA转化为ATP-DnaA需要DARS2参与,并通过一个负反馈环以细胞周期依赖性方式进行调节[24]

综上所述,本研究发现DARS2在NSCLC组织中高表达,DARS2过表达与LUAD患者不良预后相关,且与病理分期正相关。在LUAD细胞中敲低DARS2基因后,细胞的迁移和侵袭能力明显降低,DARS2可能以参与细胞周期通路的方式调控NSCLC进展。本研究局限性在于,相关分析结果多来自公共数据库,缺乏实验研究及临床样本分析,且未能补充DARS2过表达实验,后续将进一步明确DARS2在NSCLC中分子机制及作用。

作者贡献声明  艾尼瓦尔·肉孜  实验操作,数据分析,论文撰写。韩林晓,吴圆圆,朱文思  实验设计和指导。刘静,刘尽国  论文修订。周建  研究设计,论文修订。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
SIEGEL RL, MILLER KD, FUCHS HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33. [DOI]
[2]
HERBST RS, MORGENSZTERN D, BOSHOFF C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454. [DOI]
[3]
BHOWAL P, KARMAKAR PB, DEY D, et al. Aminoacyl-tRNA synthetases, indispensable players in lung tumorigenesis[J]. Protein Pept Lett, 2022, 29(3): 208-217. [DOI]
[4]
KONOVALOVA S, TYYNISMAA H. Mitochondrial. aminoacyl-tRNA synthetases in human disease[J]. Mol Genet Metab, 2013, 108(4): 206-211. [DOI]
[5]
YANG L, ZHANG R, GUO G, et al. Development and validation of a prediction model for lung adenocarcinoma based on RNA-binding protein[J]. Ann Transl Med, 2021, 9(6): 474. [DOI]
[6]
SUN N, CHU J, HU W, et al. A novel 14-gene signature for overall survival in lung adenocarcinoma based on the Bayesian hierarchical Cox proportional hazards model[J]. Sci Rep, 2022, 12(1): 27. [DOI]
[7]
WU Y, LIU Z, WEI X, et al. Identification of the functions and prognostic values of RNA binding proteins in bladder cancer[J]. Front Genet, 2021, 12: 574196. [DOI]
[8]
陈钦钦, 杨凌志, 彭心宇. 胰腺癌中关键RNA结合蛋白的功能及预后评估价值[J]. 中国现代医药杂志, 2021, 23(1): 5-11. [CNKI]
[9]
NAG S, GOSWAMI B, MANDAL SDAS, et al. Cooperation and competition by RNA-binding proteins in cancer[J]. Semin Cancer Biol, 2022, 86(Pt 3): 286-297.
[10]
CHEN P, LIU Y, WEN Y, et al. Non-small cell lung cancer in China[J]. Cancer Commun (Lond), 2022, 42(10): 937-970. [DOI]
[11]
李光, 周小龙, 王恩多. 氨基酰-tRNA合成酶与神经系统疾病[J]. 生命科学, 2020, 32(8): 763-772. [DOI]
[12]
WANG J, YANG XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer[J]. Enzymes, 2020, 48: 397-423.
[13]
DI X, JIN X, MA H, et al. The oncogene IARS2 promotes non-small cell lung cancer tumorigenesis by activating the AKT/MTOR pathway[J]. Front Oncol, 2019, 9: 393. [DOI]
[14]
SEIFERLING D, SZCZEPANOWSKA K, BECKER C, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt[J]. EMBO Rep, 2016, 17(7): 953-964. [DOI]
[15]
吴腾辉, 彭镜, 张慈柳, 等. 氨酰基-tRNA合成酶基因变异10例分析[J]. 中国当代儿科杂志, 2020, 22(6): 595-601. [CNKI]
[16]
SMITH FINE A, KAUFMAN M, GOODMAN J, et al. Wearable sensors detect impaired gait and coordination in LBSL during remote assessments[J]. Ann Clin Transl Neurol, 2022, 9(4): 468-477. [DOI]
[17]
QIN X, LI C, GUO T, et al. Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway[J]. J Exp Clin Cancer Res, 2017, 36(1): 148. [DOI]
[18]
ZHAN J, SUN S, CHEN Y, et al. MiR-3130-5p is an intermediate modulator of 2q33 and influences the invasiveness of lung adenocarcinoma by targeting NDUFS1[J]. Cancer Med, 2021, 10(11): 3700-3714. [DOI]
[19]
ZHANG J, XU H, YANG X, et al. Deubiquitinase UCHL5 is elevated and associated with a poor clinical outcome in lung adenocarcinoma (LUAD)[J]. J Cancer, 2020, 11(22): 6675-6685. [DOI]
[20]
EID RA, ELDEEN MA, SOLTAN MA, et al. Integrative analysis of WDR12 as a potential prognostic and immunological biomarker in multiple human tumors[J]. Front Genet, 2022, 13: 1008502.
[21]
FENG Z, CHEN Y, CAI C, et al. Pan-cancer and single-cell analysis reveals CENPL as a cancer prognosis and immune infiltration-related biomarker[J]. Front Immunol, 2022, 13: 916594. [DOI]
[22]
CHATONNET F, PIGNARRE A, SERANDOUR AA, et al. The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation[J]. Haematologica, 2020, 105(3): 774-783. [DOI]
[23]
JIANG F, HUANG X, YANG X, et al. NUF2 expression promotes lung adenocarcinoma progression and is associated with poor prognosis[J]. Front Oncol, 2022, 12: 795971. [DOI]
[24]
MIYOSHI K, TATSUMOTO Y, OZAKI S, et al. Negative feedback for DARS2-Fis complex by ATP-DnaA supports the cell cycle-coordinated regulation for chromosome replication[J]. Nucleic Acids Res, 2021, 49(22): 12820-12835. [DOI]

文章信息

艾尼瓦尔·肉孜, 韩林晓, 吴圆圆, 朱文思, 刘静, 刘尽国, 周建
ROUZI Ainiwaer, HAN Lin-xiao, WU Yuan-yuan, ZHU Wen-si, LIU Jing, LIU Jin-guo, ZHOU Jian
DARS2在非小细胞肺癌中的表达及其对细胞增殖和迁移的影响
Expression of DARS2 in non-small cell lung cancer and its effect on proliferation and migration
复旦学报医学版, 2023, 50(3): 390-397.
Fudan University Journal of Medical Sciences, 2023, 50(3): 390-397.
Corresponding author
LIU Jin-guo, guojinliu5453@163.com;
ZHOU Jian, E-mail: zhou.jian@fudan.edu.cn.
基金项目
上海市科委上海工程技术研究中心建设计划(20DZ2254400);上海市临床重点专科建设项目(shslczdzk02201)
Foundation item
This work was supported by the Shanghai Engineering Technology Research Center Construction Plan of Science and Technology Commission of Shanghai Municipality (20DZ2254400) and Shanghai Municipal Key Clinical Specialty Construction Project (shslczdzk02201)

工作空间