2. 复旦大学医学功能与分子影像研究所 上海 200040
2. Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai 200040, China
急性胸痛是急诊科最常见的症状之一,然而区分急性冠状动脉综合征(acute coronary syndrome,ACS)和其他原因引起的胸痛是急诊科经常遇到的难题[1-2]。具体来说,主动脉夹层(aortic dissection,AD)和肺栓塞(pulmonary embolism,PE)是两种与ACS症状相似的急性疾病,其发病迅速,死亡率较高,严重威胁患者的生命安全[3]。胸痛三联CT血管造影(triple rule out CT angiography,TRO-CTA)是一种快速、无创的检查方法,在评估冠状动脉的同时可视化肺动脉、胸主动脉及胸腔内其他结构[4-6]。
然而,与冠状动脉CT血管造影(coronary computed tomography angiography,CCTA)相比,TRO-CTA需要从主动脉弓上方一直扫到膈顶上方,扫描长度增加,因此辐射剂量较高[7]。一项研究表明[8],在第一代双源CT上使用120 kV管电压进行TRO-CTA,其辐射剂量高达22.0 mSv。又有研究表明[9],CT检查所产生的高电离辐射会导致人体DNA双链断裂进而染色体发生变异,导致患者患癌风险增加。因此,如何在保证CT图像质量的同时,最大限度地减少辐射剂量,成为人们普遍关注的问题。在过去十年,随着CT技术的快速发展,已经开发出很多新技术来减少辐射剂量,例如宽体探测器扫描[10]、迭代重建算法[11]以及Care kV技术。但目前还未有关于Care kV技术在TRO-CTA检查中的应用报道,本研究旨在探讨双源CT结合Care kV技术在TRO-CTA检查中对图像质量以及辐射剂量的应用价值。
资料和方法研究对象 回顾性收集复旦大学附属华东医院影像归档与通信系统中(picture archiving and communication systems,PACS)自2021年3月至9月于胸痛中心就诊、拟行TRO-CTA检查的90例患者作为研究对象。根据患者不同的扫描方式进行分组,其中45例患者采用管电流采用Care Dose4D技术,参考电流:320 mAs。管电压采用Care kV技术,自动调节管电压(70~140 kV),参考电压:100 kV,作为A组。另有45例患者管电流采用Care Dose4D技术,参考电流:320 mAs,管电压采用固定电压120 kV,作为B组。A组患者年龄为30~83岁,B组患者年龄为39~95岁。纳入标准:急性胸痛患者,临床疑诊为ACS、PE或AD,且出具CT诊断报告的患者。排除标准:扫描参数未使用上述两组扫描条件的TRO-CTA检查患者。所有患者均签署CT增强检查知情同意书。
图像采集 所有患者均采用新一代双源CT(Somatom Drive,德国Siemens Healthcare公司)进行扫描,准直器2 mm×64 mm×0.6 mm,机架转速0.28 s/rot。两组重建层厚均为0.75 mm,层间距0.5 mm。两组扫描范围均由头部至足部方向从主动脉弓上方扫至膈顶上方,扫描模式均为回顾性心电门控触发扫描方式。两组均采用实时心电脉冲(ECG-pulsing)技术,全剂量曝光范围为30%~80% R-R间期。注射方案两组统一95 mL碘对比剂(三代显,350 mgI/mL),第一期注射流速4.5 mL/s,共注射45 mL,第二期流速4.0 mL/s注射50 mL,第三期盐水3.5 mL/s注射30 mL[12]。运用对比剂团注示踪技术,触发阈值100 HU,延迟时间为7 s。所有图像均传送至AW4.4(美国GE Healthcare公司)进行图像后处理及测量分析。
图像客观质量评价 由一名影像诊断经验丰富的医师在工作站分别测量各组横断位图像上主肺动脉干、左肺动脉干、右肺动脉干、右冠状动脉、左前降支、左回旋支、升主动脉根部、主动脉弓、降主动脉、主动脉根部同层面的竖脊肌以及冠脉周围脂肪组织的平均CT值和SD值,并分别计算信噪比和对比噪声比[13]。主动脉根部感兴趣区(region of interest,ROI)的SD值作为图像噪声,图像信噪比(sign-to-noise ratio,SNR)=CT值/噪声,图像的对比噪声比(contrast-to-noise ratio,CNR)=(CT值-血管周围脂肪组织CT值)/噪声[14]。肺动脉、主动脉ROI面积设置为90 mm2,其他区域设置为1 mm2,每个指标测量3次取平均值,测量时为保证结果的准确性,并尽量避开斑块及钙化区域。
图像主观质量评价 由2名具有3年以上工作经验的放射科医师,采用4分法对图像进行整体评分,存在分歧时协商统一。4分为优秀,血管显示清晰,血管边缘光滑、锐利,无伪影;3分为良好,血管显示清晰,血管边缘模糊,图像运动伪影较小;2分为一般,血管显示模糊,图像运动伪影明显;1分为差,动脉血管显差,严重运动伪影干扰,无法诊断[15]。
辐射剂量 所有90例患者的辐射剂量资料从PACS中的患者剂量表中获得,记录患者TRO-CTA检查时的CTDIvol、DLP以及ED。其中ED=DLP×转换因子[K=0.014 mSv/(mGy·cm)][16]。
统计学分析 用SPSS 26.0软件进行统计分析。计量资料若符合近似正态分布,则用x±s描述,若不符合近似正态分布,则用中位数及四分位数间距进行描述,表示为M(P25,P75)。计数资料采用绝对数值和相应频率百分比描述。符合正态分布的计量资料采用独立样本t检验,不符合正态分布的计量资料采用非参数秩和检验,计数资料采用χ2检验。2名医师对图像质量评分的一致性采用Kappa检验,κ值0.21~0.40表示一致性较差,0.41~0.60表示一致性中等,0.61~0.80表示一致性良好。P < 0.05为差异有统计学意义。
结果患者基本资料 A、B两组的中位年龄分别为64.0(60.0,69.0)岁、65.0(59.5,75.0)岁,A组中男性患者24例(53.3%),女性患者21例(46.7%);B组男性患者25例(55.6%),女性患者20例(44.4%),两组患者平均身高分别为(1.68±0.07)m、(1.65±0.08)m,平均体重分别为(67.5±10.1)kg、(66.2±11.6)kg,平均BMI分别为(23.8±2.8)kg/m2、(24.1±3.0)kg/m2,平均心率为(70±10)次/分、(75±14)次/分,基本资料均无显著差异(表 1)。
Prameters | Group A | Group B | t/z | P |
Male/Female | 24/21 | 25/20 | 0.045 | 0.832 |
Age(y) | 64.0(60.0,69.0) | 65.0(59.5,75.0) | -1.377 | 0.168 |
Height(m) | 1.68±0.07 | 1.65±0.08 | 1.948 | 0.055 |
Weight(kg) | 67.5±10.1 | 66.2±11.6 | 0.589 | 0.557 |
BMI(kg/m2) | 23.8±2.8 | 24.1±3.0 | -0.545 | 0.587 |
Heart rate(bpm) | 70 ± 10 | 75±14 | -1.842 | 0.069 |
Tube voltage(kV) | 86.087 | < 0.001 | ||
90 | 31(68.89) | 0 | ||
100 | 9(20.00) | 0 | ||
110 | 4(8.89) | 0 | ||
120 | 1(2.22) | 45(100) | ||
CTDIvol(mGy) | 20.42±9.60 | 32.27±13.41 | -4.822 | < 0.001 |
DLP(mGy×cm) | 525.28±240.12 | 944.20±408.36 | -5.257 | < 0.001 |
ED(mSv) | 7.35±3.36 | 13.22±5.72 | -5.257 | < 0.001 |
BMI:Body mass index;CTDIvol:CT dose index volume;DLP:Dose length product;ED:Effective dose. |
诊断结果 根据CT诊断报告,诊断疾病情况如下:A组中,冠状动脉狭窄者20例,冠状动脉支架术后2例,主动脉瓣钙化2例,升主动脉增宽1例,肺动脉增宽1例。B组中,冠状动脉狭窄者23例,冠状动脉支架术后2例,右冠状动脉中段主动脉瘤形成1例,主动脉瓣钙化2例,主动脉粥样硬化并斑块形成1例,升主动脉增宽1例。
辐射剂量 A组中,使用90 kV进行扫描的患者31人,100 kV的9人,110 kV的4人,120 kV 1人;B组中,45例患者均用120 kV管电压进行扫描。A组平均CTDIvol显著低于B组[(20.42±9.60)mGy vs.(32.27±13.41)mGy,P < 0.001)]。同样,A组的平均DLP显著低于B组[(525.28±240.12)mGy×cm vs.(944.20±408.36)mGy×cm,P < 0.001)]。因此,A组的平均ED显著低于B组[(7.35±3.36)mSv vs.(13.22±5.72)mSv,P < 0.001)]。A组与B组相比,有效辐射剂量减少了44.4%。相关结果见表 1。
图像质量评价 左前降支远段及左回旋支远段除外,A组中其余血管CT值均显著高于B组(P < 0.05),虽然B组左前降支远段及左回旋支CT值高于A组,但两组间差异无统计学意义。A组图像噪声显著高于B组(15.79±3.81 vs. 11.37±3.40,P < 0.001)。除左前降支远段以外两组血管节段SNR差异均无统计学意义。A组肺动脉、主动脉CNR与B组差异无统计学意义,但A组冠脉CNR普遍高于B组。2名医师对于主观质量评分的一致性好(Kappa=0.637,P < 0.05),在一致性较好的情况下,采用年资较高医生所评得分作为最终评价指标。A、B两组图像肺动脉、主动脉及冠脉主观评分差异无统计学意义(表 2)。以2例BMI相似患者为例,其TRO-CTA检查结果如图 1所示。
Indexes | Group A | Group B | t/z | P |
CT value(HU) | ||||
PT | 492.26±21.23 | 404.18±14.66 | 3.414 | 0.001 |
LPA | 464.17±133.47 | 384.11±101.45 | 3.203 | 0.002 |
RPA | 457.31(359.58,580.03) | 364.30(323.86,440.47) | -3.248 | 0.001 |
AO | 483.26±87.92 | 371.78±74.00 | 6.508 | < 0.001 |
AA | 532.42(456.91,572.67) | 363.09(320.62,407.74) | -6.274 | < 0.001 |
DA | 490.25±90.74 | 359.12±73.29 | 7.542 | < 0.001 |
LMCA-P | 501.62±95.65 | 374.66±61.61 | 7.485 | < 0.001 |
LAD-M | 358.86(288.77,439.29) | 308.58(281.73,342.47) | -2.373 | 0.018 |
LAD-D | 213.08±88.66 | 237.50±57.44 | -1.550 | 0.125 |
LCX-M | 267.05±98.05 | 259.87±67.32 | 3.156 | 0.002 |
LCX-D | 260.50(199.00,305.05) | 269.08(207.71,300.60) | 0.405 | 0.768 |
RCA-P | 506.67(417.81,555.14) | 369.53(336.78,423.27) | -4.616 | < 0.001 |
RCA-M | 457.43±113.60 | 361.73±80.74 | 4.606 | < 0.001 |
RCA-D | 444.94±129.13 | 337.06±100.31 | 4.426 | < 0.001 |
ESM | 48.84±13.22 | 64.88±10.83 | -6.295 | < 0.001 |
PVAT | -102.94±6.37 | -108.77±13.32 | -5.387 | 0.010 |
Image noise | 15.79±3.81 | 11.37±3.40 | 5.803 | < 0.001 |
SNR | ||||
PT | 36.83±1.41 | 38.79±1.73 | -0.878 | 0.382 |
LPA | 31.98(26.60,37.79) | 29.08(24.76,33.38) | 1.738 | 0.143 |
RPA | 25.12(20.66,35.76) | 28.91(23.63,36.84) | -1.812 | 0.070 |
AO | 56.47(44.32,90.84) | 61.69(51.13,83.17) | -1.392 | 0.164 |
AA | 43.32±11.43 | 39.30±10.47 | -1.570 | 0.086 |
DA | 36.41±11.35 | 36.29±10.03 | 0.053 | 0.958 |
LMCA-P | 36.46(27.43,47.04) | 31.93(27.20,40.45) | -1.126 | 0.260 |
LAD-M | 12.71(8.86,19.83) | 13.97(8.95,22.40) | -0.327 | 0.744 |
LAD-D | 6.18(4.54,9.26) | 8.54(6.87,11.83) | -2.974 | 0.003 |
LCX-M | 18.14(9.41,28.39) | 16.52(11.96,23.45) | -0.286 | 0.775 |
LCX-D | 8.59(5.76,12.39) | 9.05(7.13,13.48) | -1.231 | 0.218 |
RCA-P | 28.83(19.02,44.13) | 27.12(19.91,38.02) | -0.690 | 0.490 |
RCA-M | 21.97(14.92,32.56) | 19.62(13.53,25.84) | -0.859 | 0.390 |
RCA-D | 20.99±10.36 | 20.22±12.80 | -1.206 | 0.754 |
CNR | ||||
PT | 56.12(44.90,91.05) | 70.18(53.77,91.37) | -1.497 | 0.134 |
LPA | 52.39(39.65,80.94) | 65.24(49.56,86.29) | -1.594 | 0.111 |
RPA | 54.58(39.57,92.67) | 67.94(47.12,88.46) | -1.376 | 0.169 |
AO | 56.47(44.32,90.84) | 61.69(51.13,83.17) | -0.722 | 0.470 |
AA | 60.57(46.94,95.05) | 59.18(51.24,78.36) | -0.190 | 0.850 |
DA | 59.94(44.56,93.00) | 58.60(49.60,80.66) | -0.020 | 0.984 |
LMCA-P | 105.53±23.27 | 81.42±20.92 | -4.709 | < 0.001 |
LAD-M | 80.91±21.00 | 70.71±16.68 | 2.550 | 0.013 |
LAD-D | 55.02±17.60 | 57.86±12.98 | -0.870 | 0.387 |
LCX-M | 87.81±22.04 | 74.76±20.85 | -3.095 | 0.005 |
LCX-D | 64.41±18.50 | 62.24±18.74 | 0.553 | 0.582 |
RCA-P | 102.83±23.45 | 83.46±23.51 | -4.039 | < 0.001 |
RCA-M | 97.90±24.89 | 79.06±21.90 | -3.619 | < 0.001 |
RCA-D | 96.07±28.20 | 74.65±22.08 | 4.012 | < 0.001 |
Subjective | ||||
Pulmonary artery | 3.0(2.0,4.0) | 3.0(2.0,3.0) | -1.817 | 0.069 |
Aorta | 3.0(3.0,4.0) | 3.0(3.0,3.0) | -3.765 | 0.052 |
Coronary artery | 3.0(3.0,3.0) | 3.0(2.0,3.0) | -1.945 | 0.154 |
PT:Pulmonary trunk;LPA:Left pulmonary artery;RPA:Right pulmonary artery;AO:Aortic root;AA:Aortic arch;DA:Descending aorta;SNR:Signal-to-noise ratio;CNR:Contrast-to-noise ratio;LMCA-P:Proximal left main coronary artery;LAD-M:Middle left anterior descending;LAD-D:Distal left anterior descending;LCX-M:Middle left circumflex;LCX-D:Distal left circumflex;RCA-P:Proximal right coronary artery;RCA-M:Middle right coronary artery;RCA-D:Distal coronary right artery;ESM:Erector spinae muscle;PVAT:Perivascular adipose tissue. |
在CT扫描中,辐射剂量往往与图像质量呈负相关,Care kV技术是近年来出现的一种解决辐射剂量与图像质量之间矛盾的技术[17-18]。Care kV技术在扫描患者的定位像之后,自动判断患者其体型,根据预设的图像质量水平确定扫描所需kV值,同时计算所需管电流的基准值以及变化曲线[19-21]。
胸痛三联CT血管造影(TRO-CTA)旨在一次检查中同时评估急性冠脉综合征、主动脉夹层及肺栓塞[22]。但该检查因扫描长度较长,因此辐射剂量与普通冠脉CT血管造影相比大幅增加。Takakuwa等[6]研究发现,在64层螺旋CT上采用回顾性心电门控扫描模式进行一次TRO-CTA检查,患者所受平均有效辐射剂量为18 mSv。而高剂量电离辐射可能会导致人体染色体DNA链损伤[9]。因此在本研究中我们对新一代双源CT结合Care kV技术在TRO-CTA中的应用进行了初步的临床评估,重点关注辐射剂量和图像质量。较低的管电压可以降低X线球管产生的X线光谱的平均能量[23],与固定管电压120 kV相比,在不改变检查流程的情况下,采用Care kV技术在新一代双源CT进行TRO-CTA可以显著降低辐射剂量(约44%),同时保证良好的图像诊断质量。Mangold等[24]采用Care kV技术进行胸腹主动脉CT血管造影,与标准120 kV管电压相比,剂量减少了约41%,这与我们的结果相似。
在A组中,除了左前降支、左回旋支远段,其余血管节段CT均明显高于B组,这是因为在较低的管电压下,在碘等原子序数较高的元素中光电效应增强,因此,碘对比剂在血管内的增强程度会随着管电压的降低而升高[25]。所以在碘对比剂注射方案相同的情况下,A组血管节段CT值普遍大于B组。但是由于肺动脉与主动脉、冠脉达峰时间存在差异,因此确定一套最佳的碘对比剂注射方案同时可视化肺动脉、胸主动脉及冠状动脉仍然是一个挑战[26]。
在本研究中,虽然A组图像噪声与B组相比明显增加(15.79±3.81 vs. 11.37±3.40,P < 0.001),这是因为A组管电压降低之后,X射线穿透能力降低,因此图像噪声增加[27],但图像质量与B组相比并未有显著差异,并且满足诊断要求。降低管电压之后虽然图像噪声增加,但是血管CT值增加,两组图像信噪比与对比噪声比保持相似,甚至A组冠脉图像CNR优于B组,保持了图像质量的一致性。
本研究还比较了两组图像信噪比、对比噪声比不同医师主观评分之间的差异。两组图像除了左前降支远段其余血管节段SNR,肺动脉与胸主动脉CNR均无显著差异(表 2),A组冠脉CNR普遍高于B组(表 2),两名医师对两组图像的主观评分均无显著差异。这证明采用Care kV技术进行TRO-CTA检查,在降低剂量的同时,并未牺牲图像质量。同时,根据CT影像诊断报告,两组患者中对于冠状动脉、肺动脉以及主动脉的疾病诊断结果类似,使得胸痛的多种病因能够同时准确地得到评估,说明Care kV技术结合双源CT进行TRO-CTA检查,诊断结果并不亚于常规固定管电压扫描方案,同时大幅降低辐射剂量,因此在急性胸痛患者中具有较高的临床应用价值。
本研究有以下几点局限性:第一,未应用其他降低辐射剂量技术,例如大螺距回顾性心电门控扫描,但此技术对心率要求较高,在急性胸痛患者中实际应用较少。第二,只从客观和主观两个方面评价了图像质量,并未将有创冠脉造影结果与TRO-CTA检查进行比较,因此在诊断准确性方面仍需进一步的研究。第三,两组病例数较少,且均来自同一家医院,未来将进一步扩大样本量进行多中心研究以确保结果的可信度。第四,采用固定95mL碘对比剂三期注射方案,并未根据体重、BMI等个体差异量化碘对比剂,因此碘对比剂的使用将进一步研究。
综上所述,在新一代双源CT上采用Care kV技术进行胸痛三联CT血管造影检查,在满足图像诊断质量的同时,可以显著降低辐射剂量。
作者贡献声明 王坤 研究设计,数据搜集及分析,论文撰写。金倞 论文构思、审阅和修订,数据测量及解释。李骋 数据测量,技术指导,提供病例图片。田全凯,张渌恺 数据搜集。李铭 数据分析,项目统筹,论文修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
PRADELLA S, ZANTONELLI G, GRAZZINI G, et al. The radiologist as a gatekeeper in chest pain[J]. Int J Environ Res Public Health, 2021, 18(12): 6677.
[DOI]
|
[2] |
MONICA MP, MERKELY B, SZILVESZTER B, et al. Computed tomographic angiography for risk stratification in patients with acute chest pain- the triple rule-out concept in the emergency department[J]. Curr Med Imaging Rev, 2020, 16(2): 98-110.
[DOI]
|
[3] |
KIM G, NATCHEVA H. Imaging of cardiovascular thoracic emergencies: acute aortic syndrome and pulmonary embolism[J]. Radiol Clin North Am, 2019, 57(4): 787-794.
[DOI]
|
[4] |
HALPERN EJ. Triple-rule-out CT angiography for evaluation of acute chest pain and possible acute coronary syndrome[J]. Radiology, 2009, 252(2): 332-345.
[DOI]
|
[5] |
KIM HS, KIM SM, CHA MJ, et al. Triple rule-out CT angiography protocol with restricting field of view for detection of pulmonary thromboembolism and aortic dissection in emergency department patients: simulation of modified CT protocol for reducing radiation dose[J]. Acta Radiol, 2017, 58(5): 521-527.
[DOI]
|
[6] |
TAKAKUWA KM, HALPERN EJ. Evaluation of a "triple rule-out" coronary CT angiography protocol: use of 64-Section CT in low-to-moderate risk emergency department patients suspected of having acute coronary syndrome[J]. Radiology, 2008, 248(2): 438-446.
[DOI]
|
[7] |
GALLAGHER MJ, RAFF GL. Use of multislice CT for the evaluation of emergency room patients with chest pain: the so-called "triple rule-out"[J]. Catheter Cardiovasc Interv, 2008, 71(1): 92-99.
[DOI]
|
[8] |
KETELSEN D, LUETKHOFF MH, THOMAS C, et al. Estimation of the radiation exposure of a chest pain protocol with ECG-gating in dual-source computed tomography[J]. Eur Radiol, 2009, 19(1): 37-41.
[DOI]
|
[9] |
CHANDRASHEKHAR Y, SHAW LJ, NARULA J. Diagnostic imaging, radiation exposure, and carcinogenic risk: let's be realistic, reasonable, and rational[J]. JACC Cardiovasc Imaging, 2015, 8(8): 885-887.
[DOI]
|
[10] |
CHEN Y, WANG Q, LI J, et al. Triple-rule-out CT angiography using two axial scans with 16 cm wide-detector for radiation dose reduction[J]. Eur Radiol, 2018, 28(11): 4654-4661.
[DOI]
|
[11] |
SI-MOHAMED S, GREFFIER J, BOBBIA X, et al. Diagnostic performance of a low dose triple rule-out CT angiography using SAFIRE in emergency department[J]. Diagn Interv Imaging, 2017, 98(12): 881-891.
[DOI]
|
[12] |
魏守奕, 刘佳, 刘建新. 四期团注法对比剂注射方案用于CT血管造影检查胸痛三联征[J]. 中国医学影像技术, 2021, 37(2): 294-297. [CNKI]
|
[13] |
华莉, 张记清, 张珊, 等. 固定注射时间碘对比剂优化方案在胸痛一站式CT检查中的应用[J]. 中华危重病急救医学, 2019, 31(5): 582-587. [DOI]
|
[14] |
LEE J, KIM TH, LEE BK, et al. Diagnostic accuracy of low-radiation coronary computed tomography angiography with low tube voltage and knowledge-based model reconstruction[J]. Sci Rep, 2019, 9(1): 1308.
[DOI]
|
[15] |
CHA MJ, KIM SM, AHN TR, et al. Comparing feasibility of low-tube-voltage protocol with low-iodine-concentration contrast and high-tube-voltage protocol with high-iodine-concentration contrast in coronary computed tomography angiography[J]. PLoS One, 2020, 15(7): e0236108.
[DOI]
|
[16] |
ZHANG Q, MI H, SHI X, et al. Higher iodine concentration enables radiation dose reduction in coronary CT angiography[J]. Acad Radiol, 2021, 28(8): 1072-1080.
[DOI]
|
[17] |
ELLER A, WUEST W, KRAMER M, et al. Carotid CTA: radiation exposure and image quality with the use of attenuation-based, automated kilovolt selection[J]. AJNR Am J Neuroradiol, 2014, 35(2): 237-241.
[DOI]
|
[18] |
ELLER A, WUEST W, SCHARF M, et al. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: effects on radiation exposure and image quality[J]. Eur J Radiol, 2013, 82(12): 2386-2391.
[DOI]
|
[19] |
HOLMQUIST F, HANSSON K, PASQUARIELLO F, et al. Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients[J]. Acta Radiol, 2009, 50(2): 181-193.
[DOI]
|
[20] |
ALIBEK S, BRAND M, SUESS C, et al. Dose reduction in pediatric computed tomography with automated exposure control[J]. Acad Radiol, 2011, 18(6): 690-693.
[DOI]
|
[21] |
ZHANG J, KANG S, HAN D, et al. Application of intelligent optimal kV scanning technology (CARE kV) in dual-source computed tomography (DSCT) coronary angiography[J]. Int J Clin Exp Med, 2015, 8(10): 17644-17653.
|
[22] |
BURRIS AC, 2ND, BOURA JA, RAFF GL, et al. Triple rule out versus coronary CT angiography in patients with acute chest pain: results from the ACIC consortium[J]. JACC Cardiovasc Imaging, 2015, 8(7): 817-825.
[DOI]
|
[23] |
COAKLEY FV, GOULD R, YEH BM, et al. CT radiation dose: what can you do right now in your practice?[J]. AJR Am J Roentgenol, 2011, 196(3): 619-625.
[DOI]
|
[24] |
MANGOLD S, DE CECCO CN, WICHMANN JL, et al. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison[J]. Eur J Radiol, 2016, 85(5): 972-978.
[DOI]
|
[25] |
STOCKER TJ, LEIPSIC J, HADAMITZKY M, et al. Application of low tube potentials in CCTA: results from the protection Ⅵ study[J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 425-434.
|
[26] |
FRAUENFELDER T, APPENZELLER P, KARLO C, et al. Triple rule-out CT in the emergency department: protocols and spectrum of imaging findings[J]. Eur Radiol, 2009, 19(4): 789-799.
|
[27] |
罗纯, 黄美萍, 梁长虹, 等. 低管电压结合迭代重建技术配合不同对比剂注射方案在冠状动脉CTA成像中的可行性研究[J]. 中国医学影像技术, 2014, 30(10): 1445-1449. [CNKI]
|