慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是呼吸系统的常见病,其发病率和死亡率居高不下,严重威胁人类健康。COPD发病机制尚不明确,大量研究认为其发病与气道慢性炎症、蛋白酶-抗蛋白酶失衡、氧化应激相关[1],COPD患者氧化应激增加[2]。过氧化还原蛋白(peroxredoxins,Prdx)是硫醇特异性抗氧化蛋白家族[3],包含6个亚型,其中Prdx6在肺中高表达,在肺泡上皮Ⅱ型细胞、支气管Clara细胞和肺泡巨噬细胞中均可检测到[4]。在Prdx6缺乏小鼠中发现脂多糖(lipopolysaccharide,LPS)诱导的急性肺损伤明显加重,可能是Prdx6基因被敲除,aiPLA2活性丧失,导致抗氧化作用减弱[5]。本文旨在探讨Prdx6在肺部疾病及COPD的表达及与病情的相关性。
资料和方法一般资料 回顾性分析2017年1—7月复旦大学附属浦东医院呼吸科收治的支气管扩张、哮喘、肺炎各10例患者,体检中心正常体检者30例,COPD急性加重期(AECOPD)30例,COPD稳定期(COPD)30例。患者均经肺功能检查确诊,存在不同程度的呼吸困难、气短、咳痰、慢性咳嗽等症状,根据病情分为2组,稳定期组30例,急性期组30例,年龄45~75岁。纳入标准:(1)符合2015年慢性阻塞性肺病GOLD指南[6],肺功能检测符合重度COPD标准(30%≤FEV1占预计值百分比 < 50%);(2)无支气管扩张;(3)无支气管哮喘;(4)无心力衰竭。排除标准:(1)严重肝肾功能不全;(2)癌症;(3)血液系统疾病;(4)近3个月使用免疫抑制剂;(5)严重免疫系统疾病。30例健康体检者为对照组,年龄45~75岁。本研究经本院伦理委员会批准[(2017)伦理审字(QWJWXKJS-09)号],患者以及正常体检者均签署知情同意书。
ELISA检测血清Prdx6 用缓冲液将抗体稀释至1~10 μg/mL。在反应孔中加0.1 mL,4 ℃过夜。次日,弃去孔内溶液,用洗涤缓冲液洗3次。加稀释血清0.05 mL于上述反应孔中,置于37 ℃孵育1 h,洗涤。于各反应孔中加入新鲜稀释的酶标抗体0.05 mL,37 ℃孵育0.5~1 h,洗涤;于各反应孔中加入临时配制的TMB底物溶液0.1 mL,37 ℃显色10~30 min;于各反应孔中加入2 mol/L硫酸0.05 mL,终止反应。在ELISA检测仪上于450 nm处,以空白对照孔调零后测各孔D值。
统计学分析 使用SPSS 22.0软件进行统计分析。所有结果均以x±s表示,组间差异和相关性分析采用t检验和Pearson相关性分析,单因素方差分析采用One-Way ANOVA。P < 0.05为差异有统计学意义。
结果 纳入收治的支气管扩张、哮喘、肺炎患者以及AECOPD、COPD,各组与正常体检组对比,性别及年龄差异均无统计学意义。
Prdx6在COPD患者急性期和稳定期变化 血清Prdx6水平COPD(34.50±15.58,P=0.001)、肺炎(27.94±19.15,P=0.002)、支气管扩张(35.32±8.75,P=0.001)、哮喘(38.97±11.27,P=0.001)等肺部疾病患者中均较正常体检者(12.94±6.43)明显增高,相对于COPD稳定期,急性加重期(41.37±17.64)血清Prdx6明显升高,且差异有统计学意义(P=0.048)。
COPD急性期及稳定期组内按肺功能轻重度分为重度及极重度,对血清Prdx6水平进行亚组分析。结果发现,不管是急性期(极重度:48.63±18.81,重度:31.21±9.08,P=0.002)还是稳定期(极重度:41.54±15.28,重度:25.29±10.64,P=0.003),极重度患者Prdx6水平都明显高于重度患者,提示Prdx6水平与疾病严重程度相关。
讨论 机体内氧化代谢和抗氧化代谢失衡导致的氧化应激反应是参与及加重肺部炎症的重要因素[7]。COPD的临床特点是慢性炎症反应,研究已证实COPD患者的氧化应激增加[2, 8]。Prdx6是一种具有双功能活性的抗氧化酶,可以通过GSH-Px酶的功能清除肺内过多的活性氧(reactive oxygen species,ROS),从而维持肺的稳态;而一旦发生多种肺部病理损伤时,体内氧化应激反应增加,Prdx6的iPLA2酶活性上调,导致细胞毒性和组织损伤[9-13]。本研究的主要对象为COPD患者,同时纳入了支气管扩张、肺炎、哮喘及健康体检者为对照,检测外周血Prdx6含量,研究结果提示机体发生肺部特异性或非特异性炎症时,Prdx6表达增加。进一步研究发现Prdx6的表达水平与COPD严重程度显著相关,因此我们推测随着疾病进展,炎症因子不断刺激导致体内ROS逐渐增加,机体需要更多的过氧化物酶来与之抗衡,致使极重度COPD患者Prdx6表达水平显著升高。在其他呼吸系统疾病如矽肺的报道发现,随着石英等颗粒物浓度升高,人肺上皮细胞系中Prdx6蛋白表达量逐渐升高[14],这与本研究结果相似,可能因为粉尘刺激肺部,随着时间不断延长,肺组织内沉积的石英浓度逐渐升高,这种刺激也会使ROS水平升高,从而导致Prdx6表达水平升高来应对加重的氧化应激反应。因此我们考虑在肺部特异性或非特异性炎症时Prdx6表达量会上升,以减轻肺部疾病中的氧化应激作用,从而影响疾病的发生发展及预后。Prdx6在其他系统中也有研究:Prdx6在弥漫大B细胞淋巴瘤中的表达较正常淋巴结高,同时Prdx6高表达与患者预后密切相关[15];在缺血缺氧肝细胞内,Prdx6表达较对照组有升高,氧化应激反应加重,过表达的Prdx6可以减轻肝细胞损伤[16]。Prdx6还与肿瘤进展和癌症转移有关。Prdx6在宫颈癌组织中的表达普遍升高,Prdx6过表达可刺激宫颈鳞癌细胞的增殖、迁移和侵袭,显著促进宫颈癌在体内的进展[17]。
综上所述,本研究发现Prdx6在COPD中表达增加,且与疾病严重程度相关,这将为寻求COPD治疗方法提供一个靶点。但是本研究尚有不足,下一步将继续深入分子生物学研究并增加动物实验,探讨Prdx6减轻COPD中氧化应激的具体作用机制。
作者贡献声明 徐文雨 论文构思和撰写,数据统计和分析。朱默然,徐春燕,朱先极 患者入组,数据采集,论文修订。沈瑶 论文构思和修订,数据统计和分析。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
VESTBO J, HURD SS, AGUSTÍ AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary[J]. Am J Respir Crit Care Med, 2013, 187(4): 347-365.
[DOI]
|
[2] |
SUN X, FENG X, ZHENG D, et al. Ergosterol attenuates cigarette smoke extract-induced COPD by modulating inflammation, oxidative stress and apoptosis in vitro and in vivo[J]. Clin Sci (Lond), 2019, 133(13): 1523-1536.
[DOI]
|
[3] |
CHOWHAN RK, RAHAMAN H, SINGH LR. Structural basis of peroxidase catalytic cycle of human Prdx6[J]. Sci Rep, 2020, 10(1): 17416.
[DOI]
|
[4] |
RUSHEFSKI M, APLENC R, MEYER N, et al. Novel variants in the PRDX6 Gene and the risk of acute lung injury following major trauma[J]. BMC Med Genet, 2011, 12: 77.
|
[5] |
VÁZQUEZ-MEDINA JP, TAO JQ, PATEL P, et al. Genetic inactivation of the phospholipase A 2 activity of peroxiredoxin 6 in mice protects against LPS-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(4): L656-L668.
[DOI]
|
[6] |
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(2)[J]. 中华结核和呼吸杂志, 2014-2015, 37(7): 481-485. [CNKI]
|
[7] |
BEN ANES A, FETOUI H, BCHIR S, et al. Increased oxidative stress and altered levels of nitric oxide and peroxynitrite in tunisian patients withchronic obstructive pulmonary disease: correlation with disease severity and airflow obstruction[J]. Biol Trace Elem Res, 2014, 161(1): 20-31.
[DOI]
|
[8] |
TAN WSD, SHEN HM, WONG WSF. Dysregulated autophagy in COPD: a pathogenic process to be deciphered[J]. Pharmacol Res, 2019, 144: 1-7.
[DOI]
|
[9] |
LIEN YC, FEINSTEIN SI, DODIA C, et al. The roles of peroxidase and phospholipase A2 activities of peroxiredoxin 6 in protecting pulmonary microvascular endothelial cells against peroxidative stress[J]. Antioxid Redox Signal, 2012, 16(5): 440-451.
[DOI]
|
[10] |
LÓPEZ-GRUESO MJ, LAGAL DJ, GARCÍA-JIMÉNEZ ÁF, et al. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells[J]. Redox Biol, 2020, 37: 101737.
[DOI]
|
[11] |
SCHATTAUER SS, BEDINI A, SUMMERS F, et al. Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation[J]. J Biol Chem, 2019, 294(45): 16884-16896.
[DOI]
|
[12] |
CHHUNCHHA B, KUBO E, SINGH P, et al. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress[J]. Aging (Albany NY), 2018, 10(9): 2284-2315.
|
[13] |
KIM SY, JO HY, KIM MH, et al. H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity[J]. J Biol Chem, 2008, 283(48): 33563-33568.
[DOI]
|
[14] |
VUONG NQ, GOEGAN P, DE ROSE F, et al. Responses of A549 human lung epithelial cells to cristobalite and α-quartz exposures assessed by toxicoproteomics and gene expression analysis[J]. J Appl Toxicol, 2017, 37(6): 721-731.
[DOI]
|
[15] |
刘谦, 袁晟, 刘勇. 弥漫大B细胞淋巴瘤中Prdx6的表达及其预后意义[J]. 临床与实验病理学杂志, 2021, 37(3): 279-283. [CNKI]
|
[16] |
辛亮, 李鸣, 韩敏, 等. Prdx6在缺血缺氧状态下对肝细胞的保护作用及其机制[J]. 广东医学, 2017, 38(20): 3082-3087. [DOI]
|
[17] |
HU X, LU E, PAN C, et al. Overexpression and biological function of PRDX6 in human cervical cancer[J]. J Cancer, 2020, 11(9): 2390-2400.
[DOI]
|