文章快速检索     高级检索
   复旦学报(医学版)  2022, Vol. 49 Issue (2): 282-288      DOI: 10.3969/j.issn.1672-8467.2022.02.018
0
Contents            PDF            Abstract             Full text             Fig/Tab
N-myc下游调控基因1在呼吸系统疾病中的研究进展
李成伟 , 李圣青     
复旦大学附属华山医院呼吸与危重症医学科 上海 200040
摘要:N-myc下游调控基因1(N-myc downstream regulated gene-1,NDRG1)是NDRG家族的第一个成员,与低氧和应激相关。NDRG1广泛分布在全身多种组织器官中,具有特有的分子结构和化学修饰。在肺中NDRG1主要表达在呼吸道组织内,其表达水平和化学修饰与多种呼吸系统疾病的发生发展有密切关系,包括感染性疾病、慢性气道炎性疾病、低氧相关疾病(如肺损伤、急性呼吸窘迫综合征)等,同时在肿瘤低氧微环境、肿瘤进展及耐药等方面也发挥重要作用。本文就NDRG1在呼吸系统疾病中的相关研究进展作一综述。
关键词N-myc下游调控基因1(NDRG1    呼吸系统疾病    信号通路    
Research progress on the role of N-myc downstream regulatory gene 1 in respiratory diseases
LI Cheng-wei , LI Sheng-qing     
Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
Abstract: N-myc downstream regulated gene-1 (NDRG1), the firstly identified member of NDRG family, is a hypoxia and stress related gene. NDRG1 is widely distributed and expressed in a variety of tissues and organs, with its unique molecular structure and chemical modification.NDRG1 is mainly expressed in the respiratory tract tissue in the lung.The expression level and chemical modification of NDRG1 is closely related to the occurrence and development of various respiratory diseases, including infectious diseases, chronic airway inflammatory diseases, hypoxia related diseases such as lung injury and acute respiratory distress syndrome, as well as hypoxic tumor microenvironment, tumor progression and therapeutic resistance.Therefore, this review summarizes the research progress on the role of NDRG1 in respiratory diseases.
Key words: N-myc downstream regulated gene-1 (NDRG1)    respiratory diseases    signaling pathway    

N-myc下游调控基因(N-myc downstream regulated gene,NDRG)家族是包括NDRG1~4在内的新的基因家族,NDRG1NDRG家族的第一个成员,最先被鉴定为由广泛表达的NDRG1基因编码的细胞质蛋白[1-2]。呼吸系统疾病是常见疾病,死亡率高,疾病负担重,已经成为最突出的公共卫生与医疗问题之一,对我国人民健康构成严重威胁。随着大气污染、吸烟、老龄化及病原菌耐药等问题的日益凸显,呼吸系统疾病的防治形势愈发严峻。呼吸系统疾病多存在缺氧或氧化应激,皆是诱导NDRG1表达的重要诱因。在肺中NDRG1主要表达在呼吸道组织的细胞内[3-4],参与多种生理活动和功能调节,包括肿瘤进展以及细胞应激反应,因此NDRG1在疾病发生发展过程中发挥重要作用。

NDRG1的结构  NDRG1最先发现于N-myc敲除的小鼠胚胎中,受N-myc抑制性调控。根据鉴定的细胞及基因功能的差异,该分子具有多种不同的名称,包括分化相关基因1(differentiation-related gene-1,DRG1)还原剂和衣霉素反应蛋白(reducing agent and tunicamycin-responsive protein,RTP)、钙相关蛋白43(Ca2+-associated protein 43,Cap43)和氧调节蛋白(protein regulated by oxygen,PROXY-1),最后被人类基因组组织基因命名委员会(HUGO Gene Nomenclature Committee)正式命名为NDRG1[5]NDRG1定位于染色体8q24.3[6],全长60 085 bp,包含16个外显子和15个内含子,编码2 997 bp的mRNA,其中1 182 bp为可编码区[7]NDRG1的mRNA被翻译成相对分子质量43 000、由394个氨基酸组成的蛋白质[8]。人类NDRG1蛋白与NDRG其他家族成员的不同之处在于,包含3个十肽串联重复序列,每个十肽串联重复序列都由GTRSHTSE残基组成[9]。此外,NDRG家族其他成员也缺乏C末端的两个残基Ser和Glu[10]。NDRG1的C端结构域在NDRG蛋白质中是独特结构,已证实血清和糖皮质激素诱导激酶1(serum and glucocorticoid-inducible kinase-1,SGK-1)在Thr328、Ser330、Thr346、Thr356和Thr366处磷酸化NDRG1[11-12],而糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK-3β)在Ser342、Ser352和Ser362处磷酸化NDRG1[13]。SGK1和GSK3β是抑制NDRG1的两种上游激酶,导致NDRG1水平降低[14]。同时,在C末端区域有一个磷酸泛乙烯连接位点(phosphopantetheine attachment site,PPAS)[15],在缺氧条件下,NDRG1的PPAS区域全部或部分缺失可消除核易位,应对细胞DNA损伤的反应表明PPAS可能负责NDRG1的核定位[16]。在NDRG1蛋白质N末端附近发现了另一种独特的结构,即蛋白质N末端附近的螺旋-螺旋(helix-turn-helix,HTH)以及α/β水解酶折叠内的帽状结构域(残基169~235)[15]。目前这些结构的确切功能还不清楚。

NDRG1的分布及表达  通过原位杂交分析,NDRG1在正常人体的大多数器官和系统中均有表达,包括消化道、免疫系统、生殖系统和泌尿系统,其中在肾脏、前列腺和卵巢的表达水平最高[3]。部分组织如大脑、心脏、卵巢、骨骼肌和血管等在mRNA水平表达NDRG1,但在蛋白水平无表达[4]NDRG1可对多种生物刺激产生反应,包括NO、钙离子水平及缺氧等[2]。虽然NDRG1在人体组织中广泛表达,但似乎具有组织特异性功能。胎盘中发现的NDRG1表达可归结为其在滋养层分化和缺氧诱导损伤保护中的作用[17]。NDRG1的普遍表达表明该分子可能在正常生理中发挥多效性作用。在肺组织中,免疫组织化学显示NDRG1蛋白主要在皮脂腺、外分泌腺及呼吸道肺支气管腺体表达,而在血管内皮细胞、平滑肌细胞未检测到[3]。检索the Human Protein Atlas数据库(https://www.proteinatlas.org/)同样表明,NDRG1在呼吸道上皮中呈高表达,在肺泡细胞及巨噬细胞中呈中度表达,而在肺血管中未检测到。

NDRG1与感染性疾病  烟曲霉(A. fumigatus)是一种常见真菌,当人体免疫功能受损时,就会发生严重的侵袭性曲霉病感染,烟曲霉分生孢子与Ⅱ型肺泡上皮细胞的相互作用在疾病进展中起重要作用[18]。Zhang等[19]用体外细胞模型比较了Ⅱ型肺上皮细胞在有无烟曲霉刺激下的蛋白质组学,表明烟曲霉感染后NDRG1表达上调,NDRG1敲除后烟曲霉的内化效率显著降低。这些结果表明烟曲霉促进NDRG1表达,影响肺上皮细胞代谢。

对A549细胞感染不同宿主来源的A型流感病毒(包括人源性季节性流感A病毒H3N2、猪源性流感A病毒H1N1及禽源性流感A病毒H3N2)进行mRNA表达谱分析,并用RT-qPCR验证,发现NDRG1具有差异表达[20]。A549细胞感染H5N1病毒后发现,病毒蛋白可上调NDRG1表达,NDRG1过表达释放出约4倍的病毒粒子,而NDRG1敲除导致病毒表达下降。进一步研究表明,NDRG1下调IκB激酶β(inhibitor kappa B kinase β,IKKβ)诱导的干扰素β(interferon β,IFN-β)和IL-8,提示NDRG1下调核因子κB(nuclear factor kappa-B,NF-κB),进一步抑制固有免疫,促进了A型流感病毒复制[21]

与上述研究结果相反,猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)感染会下调NDRG1表达,NDRG1缺乏可减少细胞内脂滴数量,并促进自噬,增加水解游离脂肪酸的产量,从而促进病毒RNA复制和子代病毒组装。因此,NDRG1和脂质吞噬对于了解PRRSV的发病机制和开发新的治疗方法具有重要意义[22]。EB病毒(Epstein-Barr virus,EBV)可编码自己的microRNAs,然而其生物学作用仍不详,通过对病毒miRNA阳性和阴性的差异表达基因进行筛选,发现多种EBV编码的miRNA协同下调NDRG1,同时免疫组化分析显示EBV阳性鼻咽癌组织中NDRG1表达水平明显下调,NDRG1在其中发挥的作用有助于进一步阐明EBV介导的上皮癌变机制[23]

脓毒症相关性器官损伤在脓毒症患者中有较高的发病率和死亡率,吸入2%氢气可有效改善脓毒症及相关器官损伤[24]。Jiang等[25]采用液相色谱-串联质谱分析研究氢气治疗脓毒症的相关蛋白质组学,发现氢气通过下调NDRG1及其他基因的表达减轻脓毒症小鼠的肠道损伤,但具体机制有待进一步研究。

NDRG1与慢性气道炎性疾病  慢性鼻-鼻窦炎是一种常见的上呼吸道疾病,尽管对其发病机制知之甚少,但越来越多的证据表明上皮物理屏障缺陷起着重要作用,而鼻上皮屏障功能受多种内外因素的调控,可由吸入性过敏原、微生物或病毒感染、细胞因子、缺氧或缺锌等原因引起[26]。利用Affimetrix人类全基因组基因芯片进行微阵列分析,鉴定出NDRG1在上皮细胞屏障发育过程中被诱导表达,慢性鼻-鼻窦炎患者鼻组织纤毛上皮细胞中NDRG1高表达,杯状细胞或受损上皮细胞中NDRG1低表达;NDRG1敲除通过降低连接蛋白claudin-9的表达,破坏气道上皮细胞的紧密连接,提示NDRG1对气道上皮细胞屏障的完整性起重要作用[27]

NDRG1与肺损伤/急性呼吸窘迫综合征  危重患者对呼吸机诱导的肺损伤的敏感性不同,表明基因-环境相互作用可能促进个体的易感性。对小鼠进行大潮气量通气后肺泡毛细血管通透性的测定,发现NDRG1上调,但具体作用及机制尚不清楚[28]。脂毒素A4(lipoxina4,LXA4)通过促进肺上皮细胞上皮钠通道(epithelial sodium channel,ENaC)的表达,减轻脂多糖(lipopolysaccharide,LPS)诱导的急性肺损伤和急性呼吸窘迫综合征[29]。Zhang等[30]将A549细胞与LPS和LXA4共同孵育,对A549细胞进行转录组测序,发现NDRG1在LXA4中呈剂量依赖性升高,NDRG1敲除抑制LPS处理的A549细胞活力,而磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3K)抑制剂LY294002可抑制NDRG1和ENaC-α的表达以及SGK 1的磷酸化,提示NDRG1通过介导PI3K信号通路恢复ENaC的表达,从而在LPS诱导的A549细胞损伤中发挥保护作用。

缺氧诱导信号通路参与高原环境适应性调节等多种病理过程,NDRG1具有较强的缺氧应激反应功能[31],可能在缺氧相关疾病中发挥重要作用。Grigoryev等[32]将C57BL/6J小鼠置于缺氧室中10 h,通过与常氧对照组差异基因筛选发现NDRG1在缺氧小鼠中表达上调,提示NDRG1在小鼠低氧过程中可能具有一定功能。NDRG1在缺氧的原代人类滋养层中表达增加,NDRG1基因敲除的胚胎生长受限,随着缺氧暴露,NDRG1缺乏导致载脂蛋白A2、A4、A5、C2和C4表达减少,表明NDRG1通过调节脂蛋白代谢参与缺氧损伤[33]

NDRG1与肺部肿瘤  NDRG1是一种已知的多发性肿瘤转移抑制因子,其在恶性肿瘤中的作用尚未完全阐明。既往研究发现NDRG在多种恶性肿瘤中呈高表达,促进肿瘤进展(包括肺癌)。Wang等[34]发现,肺癌患者血清NDRG1水平明显高于健康对照组。在肺组织中,与癌旁正常组织相比,肺癌组织中NDRG1表达明显增加[34-37],肺腺癌的NDRG1水平明显高于肺鳞癌[34],且NDRG1基因表达水平不随端粒状态改变[38]。预后分析显示NDRG1高表达预后差,提示NDRG1是非小细胞肺癌预后不良的预测指标[36, 39]

缺氧诱导信号通路参与肿瘤发生的多种病理过程。虽然NDRG1对缺氧的反应研究较多,但是对于NDRG1的具体调控机制研究较少。Wang等[40]研究发现,低氧诱导因子1α(hypoxia inducible factor-1α,HIF-1α)可以结合NDRG1启动子的-1202到-450区域,激活NDRG1表达,提示了NGRG1在缺氧应激反应中的作用机制。地高辛可通过抑制HIF-1α的合成,在转录水平下调缺氧诱导的NDRG1过表达[41]。Cangul等[42]发现,HIF-1非依赖性通路参与慢性低氧时该基因的调控。下调V-Ets骨髓成红细胞增多症病毒E26癌基因同源物1(recombinant V-Ets erythroblastosis virus E26 oncogene homolog 1,ETS1)抑制NDRG1的表达,表明ETS1与HIF-1共同参与调节低氧诱导基因[43]。职业性接触镍化合物与肺癌有关,Tchou-Wong等[44]研究表明,镍暴露增加了A549细胞中NDRG1启动子和编码区H3K4的三甲基化水平,为镍化合物致癌性的表观遗传机制提供了新的思路。转移性肺癌在肺腺癌患者中很常见,但其分子机制尚未完全阐明,miRNA可促进肿瘤发生发展,其中miR-576-3p在晚期肺腺癌显著降低,SGK1是miR-576-3p的直接靶点,对miR-576-3p水平的调节导致SGK1水平改变及其下游靶点NDRG1的活化改变,从而调控肺腺癌的迁移和侵袭[45]。长链非编码RNA(long non-coding RNA,lncRNA)在小细胞肺癌中的研究很少。Zeng等[46]首次证明Linc00173与小细胞肺癌的进展相关,Linc00173通过miRNA-218作为竞争性内源性RNA上调酪氨酸激酶,进而NDRG1上调,β-catenin易位,促进小细胞肺癌进展。染色质重塑蛋白家族CW型锌指结构蛋白2(microrchidia family CW-type zinc finger 2,MORC2)是一种新发现的染色质重塑蛋白,MORC2过表达抑制NDRG1启动子的活性,介导体内结直肠癌细胞的肺转移[47]

针对NDRG1的下游信号通路,研究发现NDRG1基因沉默后凋亡前蛋白BAX增加,抗凋亡蛋白Bcl-2和Bclx减少,导致线粒体损伤,线粒体膜电位被破坏,通过有效降低葡萄糖摄取、乳酸输出阻断缺氧导致的有氧糖酵解[48],这项研究为NDRG1在肺癌中的促增殖和抗凋亡机制带来启示。肿瘤起始细胞(tumor initiating cell,TIC)在多种肿瘤发生发展中起重要作用,但作用机制仍不清楚。研究发现NDRG1可促进非小细胞肺癌中TIC的干细胞样特性,包括诱导多能干细胞因子、成球能力和致瘤性,其机制为NDRG1直接与细胞S期激酶相关蛋白2(sphase kinase associated protein 2,Skp2)相互作用,通过周期蛋白依赖性激酶2(cyclin-dependent kinases,CDK2)失活降低Skp2的磷酸化,阻止C-myc降解[49]。多种恶性肿瘤都与血管生成的调节受损有关,其中血管内皮生长因子A(vascular endothelial growth factor A,VEGF-A)是一个关键的调节因子。Kosuke等[50]发现肿瘤血管内皮细胞中NDRG1缺乏阻止了磷脂酶Cγ1和细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)1/2的激活,NDRG1通过其磷酸化位点与磷脂酶Cγ1形成复合物,从而降低VEGF-A诱导的血管生成,提示NDRG1在血管生成中的作用。

耐药性是肺癌治疗中一个严重的临床问题,其中上皮细胞间质转化(epithelial-mesenchymal transition,EMT)过程在化疗耐药中起重要作用[51]。Hao等[52]利用蛋白质组学方法鉴定出耐药肺癌细胞中NDRG1显著下调,NDRG1下调使肿瘤细胞获得EMT表型,对顺铂的耐药性增加。另一项研究表明,顺铂显著上调肺癌细胞中转录激活因子3(activating transcription factor 3,ATF3)、磷酸化P53和切割半胱天冬酶3的表达,但在顺铂存在下NDRG1过表达降低了这些蛋白的水平,表明NDRG1参与肺癌对顺铂的耐药[53]。He等[54]发现,与药物敏感细胞相比,耐药肺癌细胞中NDRG1水平较低,表明NDRG1是肺癌顺铂耐药过程中DNA损伤反应和缺氧相关细胞应激反应的重要调节因子。同样,下调NDRG1表达增加了H441细胞对足叶乙甙诱导的凋亡的敏感性,抑制NDRG1表达的策略可能有助于靶向治疗[55]。具有激活表皮生长因子受体突变功能的非小细胞肺癌中,参与糖代谢的基因组在高表达p-NDRG1的患者中富集,总生存率与p-NDRG1呈负相关,揭示了p-NDRG1与EGFR耐药细胞代谢重编程之间的联系[56]

结语  NDRG1是一种广泛表达且功能多样的基因,目前认为NDRG1在呼吸系统疾病中的作用主要集中在肺部感染、慢性气道炎性疾病、低氧相关疾病及肺部肿瘤等,NDRG1可能成为这些肺部疾病的有效治疗靶点。

作者贡献声明  李成伟  文献复习,论文撰写和修改。李圣青  论文构思和修改。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
FANG BA, KOVAČEVIĆ Ž, PARK KC, et al. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy[J]. Biochim Biophys Acta, 2014, 1845(1): 1-19.
[2]
PARK KC, PALUNCIC J, KOVACEVIC Z, et al. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer[J]. Free Radic Biol Med, 2020, 157: 154-175. [DOI]
[3]
LACHAT P, SHAW P, GEBHARD S, et al. Expression of NDRG1, a differentiation-related gene, in human tissues[J]. Histochem Cell Biol, 2002, 118(5): 399-408. [DOI]
[4]
UHLÉN M, FAGERBERG L, HALLSTRÖM BM, et al. Proteomics.Tissue-based map of the human proteome[J]. Science, 2015, 347(6220): 1260419. [DOI]
[5]
LI J, KRETZNER L. The growth-inhibitory Ndrg1 gene is a Myc negative target in human neuroblastomas and other cell types with overexpressed N- or C-myc[J]. Mol Cell Biochem, 2003, 250(1-2): 91-105.
[6]
THIERRY-MIEG D, THIERRY-MIEG J. AceView: a comprehensive cDNA-supported gene and transcripts annotation[J]. Genome Biol, 2006, 7 Suppl 1(Suppl 1): S12.11-14.
[7]
BELZEN NVAN, DINJENS WN, EUSSEN BH, et al. Expression of differentiation-related genes in colorectal cancer: possible implications for prognosis[J]. Histol Histopathol, 1998, 13(4): 1233-1242.
[8]
ZHOU RH, KOKAME K, TSUKAMOTO Y, et al. Characterization of the human NDRG gene family: a newly identified member, NDRG4, is specifically expressed in brain and heart[J]. Genomics, 2001, 73(1): 86-97. [DOI]
[9]
KOKAME K, KATO H, MIYATA T. Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis.GRP78/BiP and novel genes[J]. J Biol Chem, 1996, 271(47): 29659-29665. [DOI]
[10]
HWANG J, KIM Y, KANG HB, et al. Crystal structure of the human N-myc downstream-regulated gene 2 protein provides insight into its role as a tumor suppressor[J]. J Biol Chem, 2011, 286(14): 12450-12460. [DOI]
[11]
INGLIS SK, GALLACHER M, BROWN SG, et al. SGK1 activity in Na+ absorbing airway epithelial cells monitored by assaying NDRG1-Thr346/356/366 phosphorylation[J]. Pflugers Arch, 2009, 457(6): 1287-1301. [DOI]
[12]
HOANG B, FROST P, SHI Y, et al. Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor[J]. Blood, 2010, 116(22): 4560-4568. [DOI]
[13]
MURRAY JT, CAMPBELL DG, MORRICE N, et al. Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3[J]. Biochem J, 2004, 384(Pt 3): 477-488.
[14]
SAHNI S, PARK KC, KOVACEVIC Z, et al. Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1361-1378. [DOI]
[15]
SHI XH, LARKIN JC, CHEN B, et al. The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts[J]. PLoS One, 2013, 8(9): e75473. [DOI]
[16]
KURDISTANI SK, ARIZTI P, REIMER CL, et al. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage[J]. Cancer Res, 1998, 58(19): 4439-4444.
[17]
CHEN B, NELSON DM, SADOVSKY Y. N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury[J]. J Biol Chem, 2006, 281(5): 2764-2772. [DOI]
[18]
TOOR A, CULIBRK L, SINGHERA GK, et al. Transcriptomic and proteomic host response to Aspergillus fumigatus conidia in an air-liquid interface model of human bronchial epithelium[J]. PLoS One, 2018, 13(12): e0209652. [DOI]
[19]
ZHANG X, HE D, GAO S, et al. iTRAQ-based proteomic analysis of the interaction of A549 human lung epithelial cells with Aspergillus fumigatus conidia[J]. Mol Med Rep, 2020, 22(6): 4601-4610. [DOI]
[20]
GAO J, GAO L, LI R, et al. Integrated analysis of microRNA-mRNA expression in A549 cells infected with influenza A viruses (IAVs) from different host species[J]. Virus Res, 2019, 263: 34-46. [DOI]
[21]
CHEN L, XING C, MA G, et al. N-myc downstream-regulated gene 1 facilitates influenza A virus replication by suppressing canonical NF-κB signaling[J]. Virus Res, 2018, 252: 22-28. [DOI]
[22]
WANG J, LIU JY, SHAO KY, et al. Porcine reproductive and respiratory syndrome virus activates lipophagy to facilitate viral replication through downregulation of NDRG1 expression[J]. J Virol, 2019, 93(17): e00526-19.
[23]
KANDA T, MIYATA M, KANO M, et al. Clustered microRNAs of the Epstein-Barr virus cooperatively downregulate an epithelial cell-specific metastasis suppressor[J]. J Virol, 2015, 89(5): 2684-2697. [DOI]
[24]
YANG T, WANG L, SUN R, et al. Hydrogen-rich medium ameliorates lipopolysaccharide-induced barrier dysfunction via rhoa-mdia1 signaling in caco-2 cells[J]. Shock, 2016, 45(2): 228-237. [DOI]
[25]
JIANG Y, BIAN Y, LIAN N, et al. iTRAQ-based quantitative proteomic analysis of intestines in murine polymicrobial sepsis with hydrogen gas treatment[J]. Drug Des Devel Ther, 2020, 14: 4885-4900. [DOI]
[26]
JIAO J, WANG C, ZHANG L. Epithelial physical barrier defects in chronic rhinosinusitis[J]. Expert Rev Clin Immunol, 2019, 15(6): 679-688. [DOI]
[27]
GON Y, MARUOKA S, KISHI H, et al. NDRG1 is important to maintain the integrity of airway epithelial barrier through claudin-9 expression[J]. Cell Biol Int, 2017, 41(7): 716-725. [DOI]
[28]
LI HH, LI Q, LIU P, et al. WNT1-inducible signaling pathway protein 1 contributes to ventilator-induced lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47(4): 528-535. [DOI]
[29]
QI W, LI H, CAI XH, et al. Lipoxin A4 activates alveolar epithelial sodium channel gamma via the microRNA-21/PTEN/AKT pathway in lipopolysaccharide-induced inflammatory lung injury[J]. Lab Invest, 2015, 95(11): 1258-1268. [DOI]
[30]
ZHANG JZ, LIU ZL, ZHANG YX, et al. Lipoxin A4 ameliorates lipopolysaccharide-induced A549 cell injury through upregulation of N-myc downstream-regulated gene-1[J]. Chin Med J (Engl), 2018, 131(11): 1342-1348. [DOI]
[31]
LE N, HUFFORD TM, PARK JS, et al. Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family[J]. FASEB J, 2021, 35(11): e21961.
[32]
GRIGORYEV DN, MA SF, SHIMODA LA, et al. Exon-based mapping of microarray probes: recovering differential gene expression signal in underpowered hypoxia experiment[J]. Mol Cell Probes, 2007, 21(2): 134-139. [DOI]
[33]
LARKIN J, CHEN B, SHI XH, et al. NDRG1 deficiency attenuates fetal growth and the intrauterine response to hypoxic injury[J]. Endocrinology, 2014, 155(3): 1099-1106. [DOI]
[34]
WANG D, TIAN X, JIANG Y. NDRG1/Cap43 overexpression in tumor tissues and serum from lung cancer patients[J]. J Cancer Res Clin Oncol, 2012, 138(11): 1813-1820. [DOI]
[35]
FAN C, YU J, LIU Y, et al. Increased NDRG1 expression is associated with advanced T stages and poor vascularization in non-small cell lung cancer[J]. Pathol Oncol Res, 2012, 18(3): 549-556. [DOI]
[36]
AZUMA K, KAWAHARA A, HATTORI S, et al. NDRG1/Cap43/Drg-1 may predict tumor angiogenesis and poor outcome in patients with lung cancer[J]. J Thorac Oncol, 2012, 7(5): 779-789. [DOI]
[37]
LAZAR V, SUO C, OREAR C, et al. Integrated molecular portrait of non-small cell lung cancers[J]. BMC Med Genomics, 2013, 6: 53. [DOI]
[38]
FERNÁNDEZ-MARCELO T, MORÁN A, DE JUAN C, et al. Differential expression of senescence and cell death factors in non-small cell lung and colorectal tumors showing telomere attrition[J]. Oncology, 2012, 82(3): 153-164. [DOI]
[39]
DAI T, DAI Y, MURATA Y, et al. The prognostic significance of N-myc downregulated gene 1 in lung adenocarcinoma[J]. Pathol Int, 2018, 68(4): 224-231. [DOI]
[40]
WANG Q, LI LH, GAO GD, et al. HIF-1α up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells[J]. Mol Biol Rep, 2013, 40(5): 3723-3729. [DOI]
[41]
WEI D, PENG JJ, GAO H, et al. Digoxin downregulates NDRG1 and VEGF through the inhibition of HIF-1α under hypoxic conditions in human lung adenocarcinoma A549 cells[J]. Int J Mol Sci, 2013, 14(4): 7273-7285. [DOI]
[42]
CANGUL H. Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers[J]. BMC Genet, 2004, 5: 27.
[43]
SALNIKOW K, APRELIKOVA O, IVANOV S, et al. Regulation of hypoxia-inducible genes by ETS1 transcription factor[J]. Carcinogenesis, 2008, 29(8): 1493-1499. [DOI]
[44]
TCHOU-WONG KM, KIOK K, TANG Z, et al. Effects of nickel treatment on H3K4 trimethylation and gene expression[J]. PLoS One, 2011, 6(3): e17728. [DOI]
[45]
GREENAWALT EJ, EDMONDS MD, JAIN N, et al. Targeting of SGK1 by miR-576-3p inhibits lung adenocarcinoma migration and invasion[J]. Mol Cancer Res, 2019, 17(1): 289-298. [DOI]
[46]
ZENG F, WANG Q, WANG S, et al. Linc00173 promotes chemoresistance and progression of small cell lung cancer by sponging miR-218 to regulate Etk expression[J]. Oncogene, 2020, 39(2): 293-307. [DOI]
[47]
LIU J, SHAO Y, HE Y, et al. MORC2 promotes development of an aggressive colorectal cancer phenotype through inhibition of NDRG1[J]. Cancer Sci, 2019, 110(1): 135-146. [DOI]
[48]
GUO DD, XIE KF, LUO XJ. Hypoxia-induced elevated NDRG1 mediates apoptosis through reprograming mitochondrial fission in HCC[J]. Gene, 2020, 741: 144552. [DOI]
[49]
WANG Y, ZHOU Y, TAO F, et al. N-myc downstream regulated gene 1(NDRG1) promotes the stem-like properties of lung cancer cells through stabilized c-Myc[J]. Cancer Lett, 2017, 401: 53-62. [DOI]
[50]
WATARI K, SHIBATA T, FUJITA H, et al. NDRG1 activates VEGF-A-induced angiogenesis through PLCγ1/ERK signaling in mouse vascular endothelial cells[J]. Commun Biol, 2020, 3(1): 107. [DOI]
[51]
BEDI U, MISHRA VK, WASILEWSKI D, et al. Epigenetic plasticity: a central regulator of epithelial-to-mesenchymal transition in cancer[J]. Oncotarget, 2014, 5(8): 2016-2029. [DOI]
[52]
LIU H, GU Y, YIN J, et al. SET-mediated NDRG1 inhibition is involved in acquisition of epithelial-to-mesenchymal transition phenotype and cisplatin resistance in human lung cancer cell[J]. Cell Signal, 2014, 26(12): 2710-2720. [DOI]
[53]
DU A, JIANG Y, FAN C. NDRG1 Downregulates ATF3 and inhibits cisplatin-induced cytotoxicity in lung cancer A549 cells[J]. Int J Med Sci, 2018, 15(13): 1502-1507. [DOI]
[54]
HE L, LIU K, WANG X, et al. NDRG1 disruption alleviates cisplatin/sodium glycididazole-induced DNA damage response and apoptosis in ERCC1-defective lung cancer cells[J]. Int J Biochem Cell Biol, 2018, 100: 54-60. [DOI]
[55]
WU F, ROM WN, KOSHIJI M, et al. Role of GLI1 and NDRG1 in increased resistance to apoptosis induction[J]. J Environ Pathol Toxicol Oncol, 2015, 34(3): 213-225. [DOI]
[56]
CHIANG CT, DEMETRIOU AN, UNG N, et al. mTORC2 contributes to the metabolic reprogramming in EGFR tyrosine-kinase inhibitor resistant cells in non-small cell lung cancer[J]. Cancer Lett, 2018, 434: 152-159. [DOI]

文章信息

李成伟, 李圣青
LI Cheng-wei, LI Sheng-qing
N-myc下游调控基因1在呼吸系统疾病中的研究进展
Research progress on the role of N-myc downstream regulatory gene 1 in respiratory diseases
复旦学报医学版, 2022, 49(2): 282-288.
Fudan University Journal of Medical Sciences, 2022, 49(2): 282-288.
Corresponding author
LI Sheng-qing, E-mail: shengqingli@hotmail.com.
基金项目
国家自然科学基金(81970048)
Foundation item
This work was supported by the National Natural Science Foundation of China (81970048)

工作空间