文章快速检索     高级检索
   复旦学报(医学版)  2022, Vol. 49 Issue (2): 168-174      DOI: 10.3969/j.issn.1672-8467.2022.02.002
0
Contents            PDF            Abstract             Full text             Fig/Tab
自发性早产孕妇血清中子宫平滑肌功能相关miRNA的表达及生物学功能分析
唐瑶1 , 龚小会1 , 刘海燕1 , 顾蔚蓉1 , 李笑天1,2 , 彭婷1     
1. 复旦大学附属妇产科医院产科 上海 200011;
2. 上海市女性生殖内分泌相关疾病重点实验室 上海 200011
摘要目的 基于自发性早产子宫平滑肌中调控失常的miRNAs,寻找早产孕妇血清表达失常的miRNAs。方法 采用病例-对照研究募集2017年5月—2018年8月于复旦大学附属妇产科医院就诊的妊娠24+0周至36+6周的产妇。病例组为自发性早产的入院患者,对照组为同时期门诊产检的正常孕晚期妇女,遵循伦理原则收集和随访其临床资料和血清样本。采用定制Real-time PCR检测两组血清中子宫平滑肌功能相关的8个miRNA的表达水平,寻找早产血清中差异表达的miRNA,并通过生物信息学工具探索差异表达miRNA可能的生物学通路。结果 共募集42例自发性早产孕妇(病例组)和32例非早产孕妇(对照组)。与对照组相比,miR-26b-5p和miR-936在病例组血清中的相对表达显著升高(FDR均为0.036)。生物信息分析提示: miR-26b-5p和miR-936可能通过PCNA、JARID2、PTEN和GATA4等靶分子调控血管上皮生长因子生成、细胞周期调控、磷脂酰肌醇3-激酶活性的正调节和凋亡通路等生物学通路。结论 自发性早产孕妇血清中miR-26b-5p和miR-936表达失常,血清miR-26b-5p和miR-936异常升高可能与自发性早产有关。
关键词早产    血清miRNA    miR-26b-5p    miR-936    
The serum expression and bioinformation analysis of myometrial related miRNAs for women with spontaneous preterm labor
TANG Yao1 , GONG Xiao-hui1 , LIU Hai-yan1 , GU Wei-rong1 , LI Xiao-tian1,2 , PENG Ting1     
1. Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China;
2. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
Abstract: Objective To identify abnormal expressed serum miRNA in women with spontaneous preterm labor (sPTL) based on previously reported dysregulated miRNAs in the preterm myometrium. Methods We performed a case-control study in women without prenatal complications between 24+0 and 36+6 gestational weeks during May 2017 to Aug 2018 in Obstetrics and Gynecology Hospital of Fudan University.Pregnant women diagnosed with preterm labor were recruited as case group, women without signs of labor were recruited as control group.Clinical data and serum examples were collected under ethical principle and requirements. We evaluated a total of 8 candidate miRNAs in maternal serum by performing customized PCR analysis. We also constructed an interaction network of hub target genes of related miRNAs and their enriched gene ontology sets to explore potential biological pathways. Results A total of 74 women were recruited including 42 cases and 32 controls in this study.Compared with the control group, miR-26b-5p and miR-936 were significantly overexpressed in the maternal serum of case group (both FDR=0.036).Bioinformatics analysis indicated that miR-26b-5p and miR-936 might be involved in the progression of cell cycle regulation, cardiac muscle cell proliferation, phosphatidylinositol 3-kinase activity and apoptotic processes through target molecules such as PCNA, JARID2, PTEN and GATA4. Conclusion miR-26b-5p and miR-936 were dysregulated in the serum of women with sPTL. Increased serum levels of miR-26b-5p and miR-936 might be associated with sPTL.
Key words: preterm labor    serum miRNA    miR-26b-5p    miR-936    

早产是指孕周不足37周的胎儿娩出。早产儿的器官发育不成熟,出生后近期及远期的患病率和死亡率均显著升高[1]。根据WHO的数据,全球每年约数百万的新生儿死于早产相关并发症,早产也是我国继肺炎后低于5岁儿童死亡的最常见原因[1-2]。除外医源性早产,自发性早产是早产的主要原因。但是其发病机制不清,缺乏及时有效的干预措施。

妊娠子宫由静息至收缩表型转化导致提前不可逆的产程发动是自发性早产的主要特征,而miRNA被认为是子宫平滑肌转化过程中的重要调控分子[3-4]。在子宫平滑肌细胞中,miR-200家族分子调控转录因子ZEB1、ZEB2和STAT5B,而miR-199a-3p/miR-214调控靶基因PTGS2,它们的互相作用与雌孕激素对产程的调控密切相关[5-6]。本课题组也发现一系列miRNA在自发性早产临产的子宫平滑肌中表达失常,其中miR-212-3p与炎症导致早产子宫平滑肌功能异常密切相关[4, 7]。研究显示,miRNA能够通过旁分泌或外泌体分泌等方式至外周循环成为游离的miRNA,后者可以局部自我调控或者作用于其他部位靶基因,参与疾病局部或全身的进展。早产孕妇血液中的确存在一系列表达失常的游离miRNA,研究者们陆续发现自发性早产患者血清中与宫颈长度、妊娠时长、巨大儿以及胎儿性别等有关的循环miRNAs[8-10]。但是妊娠子宫作为自发性早产核心器官,血清中与子宫平滑肌相关的miRNAs探索却没有获得关注[11]

在我们前期发现的早产子宫平滑肌相关miRNAs中,miR-212-3p经验证发现与妊娠子宫平滑肌炎症应激有关,miR-26b-5p和miR-223-3p分别调控全身炎性反应的关键基因和炎症小体NLRP3,存在参与早产的理论基础[4, 12-13];miRNA-936和miR-4746-3p因在早产子宫平滑肌中表达丰度相对较高,有稳定合适的商业合成引物,检测的重复性较好,因此被纳入研究。最后,与雌孕激素调节产程密切相关的miR-199a-3p/miR-214家族也是有价值的研究靶点[6]。为了找到早产血清特异的miRNA分子,本课题拟从上述8个miRNAs着手,采用病例-对照研究,应用定制Real-time PCR法寻找自发性早产患者血清中表达失常的miRNA,并通过生物信息学工具预测和构建相关miRNA的作用网络,以了解其可能的作用,为后续早产机制研究提供新的方向。

资料和方法

研究对象和标本采集  采用病例-对照研究,收集2017年5月—2018年8月间复旦大学附属妇产科医院产检和分娩孕妇的临床资料和血清,包括自发性早产42例(病例组)和正常妊娠32例(对照组)。自发性早产的诊断标准同早产临产: 妊娠满28周至不满37周前出现的规律子宫收缩(每20 min 4次或每60 min内8次,间隔5~6 min,持续时间达30 s以上),伴随宫口扩张≥2 cm。对照组为同期于我院产检的未足月的孕晚期产检正常妊娠产妇,无腹痛腹胀或阴道流液。两组的排除标准包括: 多胎妊娠,辅助生殖,妊娠合并子宫肌瘤,妊娠合并子宫畸形,胎盘植入,胎盘前置,胎儿畸形,生殖道感染、发热以及内科(孕前糖尿病、血液系统或者免疫系统疾病)或者外科合并症(胆囊炎、阑尾炎或胰腺炎)。患者入组后即刻采集5 mL的外周静脉血,早产组血样均采集于患者诊断为自发性早产诊断时,且在患者诊断时(即入组时)均进行了感染指标检测,包括生殖道病原学培养、血常规和CRP;非早产组招募自妊娠32~34周常规进行血检的孕妇,入组时均进行了血常规检验。

全血样本于常温促凝管中静置30 min,然后于低温离心机1 900×g离心10 min,上清液吸出后分装并保存于-80 ℃冰箱。患者一般临床资料的采集包括年龄、产孕次、BMI、是否有妊娠期合并症,通过电子档案采集了早产组和非早产组病人的血常规报告以及早产组病人的病原学培养和CRP报告;该研究需随访至分娩后,获得的妊娠结局资料包括分娩孕周及新生儿体重及APGAR评分。本研究获得了复旦大学附属妇产科医院伦理委员会的批准(批件号2017-15),所有患者均签署书面知情同意书。

Real-time PCR检验  根据试剂盒的步骤,取200 μL的血清加入Trizol裂解液,并在其中加入3.5 μL cel-mir-39-3p的工作液作为外参以监测miRNA提取和逆转录的效率,采用离心柱法提取血清中的总RNA,随后进行cDNA合成,所有试剂盒采购自德国QIAGEN公司(货号217184和218161)。基于ABI 7500 HT实验平台,采用miScript SYBR Real time PCR试剂盒(货号218073)和定制化miScript miRNA PCR板(货号331231),同时检测血清中8条候选miRNA(包括miR-199a-3p,miR-936,miR-4746-3p,miR-26b-5p,miR-214-3p,miR-214-5p,miR-212-3p和miR-223-3p),3条候选内参miRNA(包括miR-16-5p,let-7d-5p和RNU6-6P)以及cel-mir-39-3p、阴性和阳性对照作为质控。定制化PCR板中的引物均来自QIAGEN已商品化的产品。PCR反应采用10 μL反应体系,反应条件: 95 ℃预变性15 min,然后94 ℃变性15 s、55 ℃退火30 s和70 ℃延伸30 s,共45个循环后反应结束,确认Real-time PCR的扩增曲线和融解曲线,进行PCR相对定量。目的基因miRNA的表达水平根据PCR扩增曲线所得CT值,CT值的阈值设置为40。基于Norm finder算法[14],计算3条候选内参hsa-miR-16-5p,let-7d-5p和RNU6-6P的稳定系数,并选择表达最为稳定的分子作为内参,比较内参基因与目的基因的CT值,得出各标本之间目的基因表达量的多少。计算公式: ΔCT=CT目的基因-CT管家基因;相对含量(%)=2-ΔΔCT×100%,其中ΔΔCT=(CT目的基因-CT管家基因)实验组-(CT目的基因-CT管家基因)对照组。

生物信息学分析  采用数据库miRDB (mirdb.org)和miRTarBase (mirtarbase.mbc.nctu.edu.tw)同时预测差异表达miRNA的靶基因,预测结果的交集作为差异表达miRNA的靶基因并纳入后续分析。采用STRING (string-db.org)获得靶基因互相关系后,基于MNC算法计算靶基因中的热点基因,取排在前50位的热点基因信息,导入Cytoscape软件进行生物学通路的富集分析及热点基因互作网络图构建[15]

统计学方法  采用SPSS 17.0软件分析,连续性变量采用x±s或中位数M(IQR)表示,组间比较采用独立样本t检验或Mann-Whitney U检验;计数资料用率表示,组间比较采用用χ2检验或Fisher精确概率法。连续性变量的相关性分析采用Pearson相关分析。P < 0.05为差异有统计学意义。采用Benjamini-Hochberg法对多次组间比较的P值进行矫正,矫正后FDR < 0.05为差异有统计学意义。

结果

早产和非早产孕妇临床资料比较  研究共纳入42位早产孕妇和32位非早产孕妇,一般情况及临床特征见表 1。两组在入组年龄、初产妇比例、采样孕周、体重指数、妊娠期高血压疾病及妊娠期糖尿病方面无显著差异。早产组全血白细胞数目(white blood cell,WBC)和中性粒细胞数目(neutrophils,N)均显著高于非早产组(P均 < 0.05,表 1)。早产组中,5例感染指标C-反应蛋白(C-reaction protein,CRP)升高,测量值分别为10、10、32、34、42 mg/L(参考范围 < 10 mg/L,低于10 mg/L不回报数值);7例生殖道病原体培养结果异常,产后回报为解脲支原体携带者(参考范围: 阴性)。

表 1 研究对象的临床特征和妊娠结局 Tab 1 Clinical characteristics and pregnancy outcomes of the studied population
Characteristics NP (n=32) PTL (n=42) Statistics Pa
Maternal age (y) 32.22±5.93 29.98±3.33 1.923 0.061
Nulliparity 24 (75%) 24 (57.14%) 2.541 0.143
Gestational week at sampling 33.55±2.14 34.20±3.41 -0.941 0.350
BMI (kg/m2) at sampling 25.60±2.55 26.91±3.40 -1.824 0.072
PHD 5/32 (15.63%) 6/42 (14.29%) 0.025 1.000
GDM 8/32 (25%) 4/42 (9.52%) 3.158 0.111
Blood count at enrollment (×109/L)
  White blood cell 8.67 ±1.56 10.31±2.84 -3.163 0.002
  Neutrophils 6.44±1.43 7.80±2.77 -2.738 0.008
  Lymphocyte 1.51±0.39 1.60±0.47 -0.942 0.349
Obstetrics outcomes b
  Delivery week 39.13±1.11 34.52±2.71 9.969 < 0.001
  Fetal weight (gram) 3295±337.05 2398±577.39 7.822 < 0.001
  Fetal gender (female) 20/29 (68.97%) 22/42 (52.38%) 0.402 0.479
aData were presented as mean±standard or frequency/N (percentages) for continuous or category variables. P and statistics were calculated using independent Student t test or Fisher’s exact test for continuous or category variables. bThree women in NP delivered in other institutions and birth outcomes were acquired by telephone interview.NP: Not in labour pregnancy;PTL: Preterm in labour;BMI: Body mass index;PHD: Pregnancy-related hypertension disorder;GDM: Gestational diabetes mellitus.

非早产组中有3例患者于本机构外分娩,她们在本机构末次产前检查时间均为孕37周后,电话随访后确定分娩结局,患者均否认新生儿不良结局。早产组胎儿的分娩体重显著低于非早产组胎儿的出生体重(P < 0.001),两组胎儿性别比例无显著差异(P=0.33)。本研究中,早产组的3例患儿1 min Apgar评分7分,复苏后出生5 min Apgar评分均恢复正常。非早产组的新生儿出生Apgar评分和5 min后Apgar评分均正常范围内。

早产和非早产组的血清miRNA表达情况比较  根据Normfinder算法,稳定值数值越小、分子表达越稳定。本研究中候选内参miR-16-5p、let-7d-5p和RNU6-6P的稳定值分别为0.44、0.16和0.66,故以let-7d-5p为内参计算血清miRNA分子的相对表达量。表 2展示了目标血清miRNAs的相对表达水平及组间比较,早产组孕妇血清miR-936和miR-26b-5p的相对表达量较非早产组的分子相对表达量显著升高(FDR均为0.036)。

表 2 早产组和非早产组血清miRNA相对表达情况及比较 Tab 2 Comparison of the relative expression levels of circulated miRNAs in NP and PTL groups
miRNAs NP (n=32) PTL (n=42) U P FDR
hsa-miR-199a-3p [82.18 (39.55-146.54)]×10-3 [84.09 (52.10-110.17)]×10-3 0.224 0.823 0.823
hsa-miR-936 [9.67 (0-37.45)]×10-4 [25.87 (11.12-89.12)]×10-4 2.623 0.009 0.036
has-miR-4746-3p 4.36 (1.20-17.39) 11.51 (4.65-50.30) 2.024 0.043 0.115
hsa-miR-26b-5p 7.45 (3.80-10.11) 9.51 (7.41-11.33) 2.608 0.009 0.036
hsa-miR-214-3p [39.76 (14.12-94.46)]×10-4 [30.13 (10.82-42.91)]×10-4 -1.435 0.151 0.242
hsa-miR-214-5p [23.31 (8.22-37.02)]×10-4 [16.20 (6.36-43.37)]×10-4 -0.236 0.793 0.823
hsa-miR-212-3p [22.33 (1.98-36.90)]×10-4 [14.83 (4.01-21.45)]×10-4 -1.140 0.254 0.339
hsa-miR-223-3p 181.13 (74.87-345.05) 267.88 (133.30-449.65) 1.571 0.116 0.232
Data were presented as median (range).P and Statistics were calculated by Mann Whitney U test. False Discovery Rate (FDR) of the multiple tests were adjusted by Benjamini-Hochberg method. Abbreviation: NP: Not in labour pregnancy;PTL: Preterm in labour.

不同白细胞水平早产和非早产组的血清miRNA表达情况比较  妊娠期WBC无公认的参考范围,因此基于ROC受试者曲线取约登指数最大处的WBC值作为截断值(即WBC=10.55×109/L),将所有人再次分为WBC升高组和WBC正常组(表 3)。WBC升高组的23人中仅包括了4例非早产人群。WBC正常组共51人,早产和非早产人群比例相当。WBC升高组中,miR-936和miR-26b-5p在早产中虽表现出升高趋势但不显著。在WBC正常组中,miR-26b-5p和miR-936在早产人群中均显著升高(P均 < 0.05)。

表 3 以WBC水平分层后早产组和非早产组血清miRNA相对表达情况及比较 Tab 3 Comparison of the relative expression levels of circulated miRNAs in NP and NLP groups after stratified with WBC level
miRNAs NP PTL U P
High WBC (n=23) hsa-miR-26b-5p 8.16 (3.90-10.40) (n=4) 9.13 (7.41-10.70) (n=19) 0.812 0.456
hsa-miR-936 0 (0-29.29)×10-4 (n=4) 25.41 (10.61-84.90) ×10-4 (n=19) 1.830 0.067
Normal WBC (n=51) hsa-miR-26b-5p 7.30 (3.80-10.11) (n=28) 10.20 (6.41-13.36)(n=23) 2.423 0.015
hsa-miR-936 10.55 (0-41.34)×10-4 (n=28) 36.19 (11.61-126.91)×10-4 (n=23) 2.029 0.043
Data were presented as median (range). P and U were calculated by Mann Whitney U test. WBC cut off value was set at 10.55×109/L according to optimal Yoden index.NP: Not in labour pregnancy;PTL: Preterm in labour;WBC: White blood cell.

N和WBC的测量值互相呈显著强的正相关(Pearson相关系数0.929,P < 0.001),根据N进行分层分析可以得到相似的分层统计结果。在早产人群中再根据CRP升高与否、WBC升高与否以及携带支原体与否分别进行亚组分析,miR-26b-5p和miR-936水平均无显著变化(P均>0.05)。

早产组中调控失常miRNA的生物信息分析  共有266个基因同时被数据库miRDB和miRTarBase预测到是miR-936或miR-26b-5p的靶基因。利用STRING数据库获得靶基因的互作关系,并最终获得前50位关键基因(Hub genes),包括miR-936的靶基因MBNL1FGF2HIST1H2BK,以及miR-26b-5p的靶基因PTENEP300EZH2等。基因富集分析(Gene Enrichment Analysis)结果显示,主要富集的靶向通路包括细胞周期调控、miRNA调控、磷脂酰肌醇3-激酶活性的正调节及心肌细胞调控等方向(图 1)。

图 1 前50位关键靶基因的基因富集分析和互相作用 Fig 1 Gene enrichment analysis and gene interaction network of top 50 hub genes
讨论

妊娠子宫提前由静息表型转为收缩表型是自发性早产主要临床特征,它是自发性早产疾病进展的核心器官。本研究首次从子宫平滑肌角度出发,测定了孕妇血清中子宫平滑肌相关miRNAs的表达,发现血清miR-936和miR-26b-5p在自发性早产中异常升高。本文也针对miR-936和miR-26b-5p有实验室证据支持的靶基因中寻找关键基因进行功能富集和基因本位分析,初步了解了miR-936和miR-26b-5p可能的作用通路。

人类外周血单核细胞在感染大肠埃希菌或西氏菌属后表达高水平的miR-26b-5p分子,miR-26b-5p调节了约20%与败血症死亡率显著有关的关键基因[12, 16];miR-26b-5p也能够调控炎症因子COX2及其合成产物PGE2[17]。在免疫性疾病如银屑病中,miR-26b-5p在皮下脂肪组织中显著升高与免疫相关单核细胞、纤维细胞及血管内皮细胞中胆固醇代谢的调控密切相关[18]。综上,miR-26b-5p是一个重要的炎症和免疫调控分子。尽管如此,本研究数据提示血清miR-26b-5p与早产的关系独立于炎症。近期国际的临床研究提示自发性早产中磷脂代谢异常,有趣的是,我们预测的miR-26b-5p关键靶点也富集于磷脂代谢调节过程,miR-26b-5p是否参与上述过程需要进一步实验验证[19]

与本文报道的结果相反,Wang等[20]发现早产中miR-26b-5p异常降低,胎盘中miR-26b-5p下调是维生素D缺乏导致早产的重要调控分子。由于本文的研究对象为经济和营养条件较好的国内一线城市患者,维生素D缺乏导致的早产并非主因,并且本研究聚焦于血清而非胎盘,不同的人群和样本类型可能造成研究间的差异。

目前暂无研究提及miR-936在早产中的作用。miR-936靶向的FGF2是本文预测靶基因作用网络的热点基因之一,可以调控心肌细胞的增殖及正性调控细胞内磷脂酰肌醇3-激酶活性等过程。本研究结果也提示,miR-936和miR-26b-5p还可能与机体的细胞周期调控和miRNA调控等功能有关。尽管如此,miR-26b-5p在组织和血清中的分子作用机制差异以及miR-26b-5p和miR-936在子宫平滑肌和外周器官的作用机制还需要进一步研究。

目前,受限于研究技术、分析方法及研究人群,早产血清中表达失控的miRNAs在不同研究间的异质性较强。甚至在2015年,Elovitz等[21]基于该课题组Array技术筛查结果认为早产患者血清miRNA与未早产者无明显区别。但是后来其他科研团队基于实时PCR和RNA测序等技术,陆续发现了与宫颈长度、妊娠时长、巨大儿以及胎儿性别等有关的循环miRNA[8, 10, 22]。同时,随着RNA研究技术的不断发展成熟,不限于循环中游离的miRNA这一形式,外泌体来源的miRNA、甚至环状RNA都被证实在早产孕妇中呈现特异的表达谱[23-24]。因此,寻找早产血清中表达失控RNA分子仍是早产领域的研究热点。

本课题探索了可能与早产有关的多种miRNAs在血清中的表达,采用稳定的Real-time PCR测定法及科学的血清miRNA内参筛选及鉴定法是课题的优势之一。不足在于: 本课题为小样本的探索性研究,限制了差异性统计分析以及分层分析或亚组分析的把握度,需要在更大规模的人群中进行验证;其次,由于缺乏正常分娩发动产妇作为参照,miR-936和miR-26b-5p与正常产程关系不能明确;最后,虽然通过生物信息方法预测了相关miRNA的功能,后续需要在体外实验中证实miR-936和miR-26b-5p的功能及分子机制。

本研究结果显示血清miR-936和miR-26b-5p水平在早产孕妇中显著升高,并通过生物信息法初步了解了miR-936和miR-26b-5p可能的生物学作用,为早产发病机制的研究提供了新的方向。

作者贡献声明  唐瑶  论文撰写,实验分析。龚小会  标本采集,实验分析,论文修改。刘海燕  标本采集。顾蔚蓉,李笑天  论文修改,数据审核。彭婷  实验设计,论文修改。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
FREY HA, KLEBANOFF MA. The epidemiology, etiology, and costs of preterm birth[J]. Semin Fetal Neonat M, 2016, 21(2): 68-73. [DOI]
[2]
LIU L, OZA S, HOGAN D, et al. Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis[J]. Lancet, 2015, 385(9966): 430-440. [DOI]
[3]
RENTHAL NE, WILLIAMS KC, MENDELSON CR. MicroRNAs--mediators of myometrial contractility during pregnancy and labour[J]. Nat Rev Endocrinol, 2013, 9(7): 391-401. [DOI]
[4]
TANG Y, JI H, LIU H, et al. Identification and functional analysis of microRNA in myometrium tissue from spontaneous preterm labor[J]. Int J Clin Exp Pathol, 2015, 8(10): 12811-12819.
[5]
RENTHAL NE, CHEN CC, WILLIAMS KC, et al. miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor[J]. Proc Natl Acad Sci U S A, 2010, 107(48): 20828-20833. [DOI]
[6]
WILLIAMS KRC, RENTHAL NE, GERARD RD, et al. The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor[J]. Mol Endocrinol, 2012, 26(11): 1857-1867. [DOI]
[7]
TANG Y, JI H, LIU H, et al. Pro-inflammatory cytokine-induced microRNA-212-3p expression promotes myocyte contraction via methyl-CpG-binding protein 2: a novel mechanism for infection-related preterm parturition[J]. Mol Hum Reprod, 2019, 25(5): 274-282. [DOI]
[8]
COOK J, BENNETT PR, KIM SH, et al. First trimester circulating microRNA biomarkers predictive of subsequent preterm delivery and cervical shortening[J]. Sci Rep, 2019, 9(1): 5861. [DOI]
[9]
HROMADNIKOVA I, KOTLABOVA K, IVANKOVA K, et al. Expression profile of C19MC microRNAs in placental tissue of patients with preterm prelabor rupture of membranes and spontaneous preterm birth[J]. Mol Med Rep, 2017, 16(4): 3849-3862. [DOI]
[10]
MIURA K, HIGASHIJIMA A, HASEGAWA Y, et al. Circulating levels of maternal plasma cell-free miR-21 are associated with maternal body mass index and neonatal birth weight[J]. Prenatal Diag, 2015, 35(5): 509-511. [DOI]
[11]
BARCHITTA M, MAUGERI A, QUATTROCCHI A, et al. The role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review[J]. Int J Genomics, 2017, 2017: 8067972.
[12]
ZHANG Z, CHEN L, XU P, et al. Gene correlation network analysis to identify regulatory factors in sepsis[J]. J Transl Med, 2020, 18(1): 381. [DOI]
[13]
JIMENEZ CALVENTE C, DEL PILAR H, TAMEDA M, et al. MicroRNA 223 3p negatively regulates the NLRP3 inflammasome in acute and chronic liver injury[J]. Mol Ther, 2020, 28(2): 653-663. [DOI]
[14]
ANDERSEN CL, JENSEN JL, ØRNTOFT TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res, 2004, 64(15): 5245-5250. [DOI]
[15]
CHIN CH, CHEN SH, WU HH, et al. CytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol, 2014, 8(Suppl 4): S11. [DOI]
[16]
PANWAR B, OMENN GS, GUAN YF. miRmine: a database of human miRNA expression profiles[J]. Bioinformatics, 2017, 33(10): 1554-1560. [DOI]
[17]
JIANG S, CHEN Z, LAI W, et al. Decoction of heat-clearing, detoxifying and blood stasis removing relieves acute soft tissue injury via modulating MiR-26b-5p/COX2 axis to inhibit inflammation[J]. Biosci Rep, 2020, 40(12): BSR20201981. [DOI]
[18]
CHEUNG L, FISHER RM, KUZMINA N, et al. Psoriasis skin inflammation-induced microRNA-26b targets NCEH1 in underlying subcutaneous adipose tissue[J]. J Invest Dermatol, 2016, 136(3): 640-648. [DOI]
[19]
MORILLON AC, YAKKUNDI S, THOMAS G, et al. Association between phospholipid metabolism in plasma and spontaneous preterm birth: a discovery lipidomic analysis in the cork pregnancy cohort[J]. Metabolomics, 2020, 16(2): 19. [DOI]
[20]
WANG B, ITHIER MC, PAROBCHAK N, et al. Vitamin D stimulates multiple microRNAs to inhibit CRH and other pro-labor genes in human placenta[J]. Endocr Connect, 2018, 7(12): 1380-1388. [DOI]
[21]
ELOVITZ MA, ANTON L, BASTEK J, et al. Can microRNA profiling in maternal blood identify women at risk for preterm birth?[J]. Am J Obstet Gynecol, 2015, 212(6): 782.
[22]
GE QY, ZHU YA, LI HL, et al. Differential expression of circulating miRNAs in maternal plasma in pregnancies with fetal macrosomia[J]. Int J Mol Med, 2015, 35(1): 81-91. [DOI]
[23]
FALLEN S, BAXTER D, WU XG, et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour[J]. J Cell Mol Med, 2018, 22(5): 2760-2773. [DOI]
[24]
RAN Y, YIN N, HUANG D, et al. Identification and characterization of circular RNA as a novel regulator and biomarker in preterm birth[J]. Front Bioeng Biotechnol, 2020, 8: 566984. [DOI]

文章信息

唐瑶, 龚小会, 刘海燕, 顾蔚蓉, 李笑天, 彭婷
TANG Yao, GONG Xiao-hui, LIU Hai-yan, GU Wei-rong, LI Xiao-tian, PENG Ting
自发性早产孕妇血清中子宫平滑肌功能相关miRNA的表达及生物学功能分析
The serum expression and bioinformation analysis of myometrial related miRNAs for women with spontaneous preterm labor
复旦学报医学版, 2022, 49(2): 168-174.
Fudan University Journal of Medical Sciences, 2022, 49(2): 168-174.
Corresponding author
PENG Ting, E-mail: Dr_TingPeng@163.com.
基金项目
国家自然科学基金(81671484)
Foundation item
This work was supported by the National Natural Science Foundation of China (81671484)

工作空间