2. 复旦大学附属华山医院放射科 上海 200040;
3. 复旦大学附属华山医院皮肤科 上海 200040
2. Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China;
3. Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
系统性红斑狼疮(systemic lupus erythemato-sus,SLE)是一种可累及全身多个系统的慢性弥漫性结缔组织病,病因尚未明确,患者血清中存在以抗核抗体(anti-nuclear antibodies,ANA)为代表的多种自身抗体。神经精神性狼疮(neuropsychiatric systemic lupus erythematosus,NPSLE)是SLE累及神经系统而导致神经、精神症状的一组严重并发症[1]。NPSLE的发病率尚不明确,研究显示12%~95%的SLE患者有相关表现[2]。目前针对NPSLE发病机制的研究主要集中在自身抗体、细胞因子和血脑屏障(blood-brain barrier,BBB)功能障碍等方面。这些因素相互作用导致NPSLE发生的机制尚不完全清楚。
小胶质细胞(microglia,MG)是中枢神经系统(central nervous system,CNS)内常驻的免疫细胞,可能参与上述因素的相互作用。已有学者在一些易患狼疮的小鼠模型中发现了反应性MG,抑制MG激活可以减轻多种小鼠模型的NPSLE表现[3],说明MG在NPSLE的生理、病理过程中发挥着重要作用。阐明MG在NPSLE发病中的作用对于进一步理解NPSLE的发病机制、诊断和治疗相关内容具有重要意义,因此本文将围绕MG在NPSLE发病机制中作用的研究进展进行综述。
小胶质细胞 MG起源于中胚层,与外周巨噬细胞同属造血细胞起源的单核巨噬细胞,在脑内各部位均有分布[4]。在稳态条件下,MG在大脑中主要起监视作用,在体成像研究表明,MG以高度动态的方式不断地伸展和收缩,对周围的微环境进行扫描[5]。周围微环境的微小变化,如感染、缺血、损伤等,均会使MG呈现出活化状态。
MG的活化并不是从一种状态到另一种状态的简单转换,而是一个复杂的动态过程。活化的MG分为两种表型:M1型(经典活化型)和M2型(替代活化型),两者的主要区别是激活条件、表面抗原标志物和功能。M1受到干扰素-γ(interferon γ,IFN-γ)、TLRs(Toll-like receptors,TLRs)等激活,表面抗原包括CD80、CD32和CD86等,分泌促炎因子[如IL-6、肿瘤坏死因子-α(tumor necrosis factor,TNF-α)]、趋化因子[如单核细胞趋化蛋白-1(monocyte chemoattractant protein,MCP-1)和干扰素诱导蛋白-10(interferon-inducible protein-10,IP-10)],介导炎症反应,清除有害物质,但炎症介质的过度释放将产生细胞毒性作用[6]。M2受IL-3、IL-4等激活,表面抗原包括Chi3l3、Arg-1和CD206等,分泌抗炎因子[如IL-10、胰岛素样生长因子-1(insulin-like growth factors-1,IGF-1)]和转化生长因子-β(transforming growth factor-β,TGF-β),抑制或减轻中枢炎症反应,还能分泌神经营养因子,主要发挥神经元保护作用[7]。现已证实NPSLE患者脑脊液中IL-6、TNF-α水平上升[8],提示在NPSLE中MG激活态以M1型为主;但值得注意的是MG可以经过多次激活过程,且在一定的条件下M1和M2型MG之间可以进行相互转化。
综上所述,激活的MG释放细胞因子和活性氧自由基等,这些分子可以通过旁分泌方式调节星形胶质细胞和神经元,也可以通过正反馈或负反馈环以自分泌方式影响MG自身。研究证实,MG的活化与一系列CNS免疫相关性疾病的发生发展有关,如多发性硬化症、阿尔兹海默症等[9-10],因此MG的活化可能参与各类CNS疾病的发病过程。
神经精神性狼疮
NPSLE的免疫学病因 NPSLE的发病机制较为复杂,至今尚未明确,难以用单一的机制解释,其中免疫学因素起主要作用,目前广为接受的机制是炎症因子、BBB功能障碍和自身抗体等因素的相互作用。有研究显示,SLE患者脑脊液中IL-6、TNF-α水平与NPSLE显著相关[11],且已知多种炎症因子能够导致体内免疫失衡、MG活化及自身免疫炎症等。此外,MG作为CNS的常驻免疫细胞,其自身可以产生和释放多种炎症因子参与上述过程。在正常情况下,BBB可以防止白细胞和炎症介质进入脑实质引起炎症;因此,短暂的BBB功能失调可能导致炎症介质的鞘内迁移[12]。另外,SLE患者中反应BBB功能的脑脊液标志物S100B水平与精神心理学测试结果的相关性证实SLE的精神症状与BBB功能紊乱有关[13]。BBB功能障碍是自身抗体进入脑脊液或浆细胞进入脑脊液导致自身抗体产生的必要条件。脑脊液中的出现的各类自身抗体可与神经元抗原形成免疫复合物,并被浆细胞样树突状细胞内吞而产生IFN-α。IFN-α可直接导致神经元损伤,通过诱导MG吞噬神经元或产生不同的促炎细胞因子和趋化因子产生神经毒性,也可激发NPSLE发生[14]。上述自身抗体主要有:抗磷脂抗体(anti-phospholipid antibodies,APL)、ANA、抗神经元抗原抗体、抗内皮抗体(anti-endothelial antibodies,AECA)[15]。
NPSLE的脑组织改变 NPSLE患者的脑组织呈慢性病理改变,因此NPSLE患者的各类神经、精神症状通常与SLE疾病活动不同步,在SLE疾病静止期NPSLE症状仍然存在并不断进展。其中,脑血管损伤是NPSLE的主要组织病理学过程,大多数病变与之相关。在此基础上,NPSLE患者脑组织学检查显示存在脑水肿、血管重塑和管壁钙化,神经元和髓鞘轴突丢失、微梗死和弥漫性缺血改变、MG增生和反应性星形细胞增多等[16]。小血管的频繁受累、内皮细胞增生、微血栓的存在以及频繁、明显的局灶性或弥漫性脑水肿还证实存在弥漫性内皮损伤,提示血脑屏障的破坏[16]。
Ercan等[17]采用影像学手段检测NPSLE患者脑内潜在的细胞类型特异性微结构改变,结果显示神经元/轴突代谢产物和胶质细胞代谢产物扩散增加,与神经元水肿和炎症介导的MG和星形胶质细胞的形态学改变有关,提示CNS受累有MG参与。David等[18]对NPSLE模型小鼠(MRL-lpr)的研究报告MG活化水平随小鼠年龄增长而增长。且体内外研究均已证实,SLE患者的血清可以导致MG发生表面CD86表达增加、促炎细胞因子产生增加等变化,即SLE患者血清可诱导MG活化[19-20]。结合NPSLE患者的脑组织学、影像学改变推断MG活化是NPSLE脑组织改变重要的过程之一,可能在NPSLE发生发展中起关键作用。神经元是CNS最重要的结构和功能单位,神经元或突触损害常是神经系统疾病的基础,因此不难理解NPSLE的神经、精神症状与突触丢失密切相关。研究表明,抑制MG活化可以减少NPSLE模型小鼠的突触丢失和行为表型改变[21],提示在NPSLE中MG可能通过影响神经元和突触的结构和功能而导致疾病的发生。
MG在NPSLE中的作用
MG的吞噬作用 激活后的MG的显著特征之一是具有吞噬、清除能力。在大脑正常的发育过程和部分CNS疾病中[22],MG在突触和神经元的吞噬清除中都会发挥作用。NPSLE患者和动物模型中均发现存在神经元和突触的缺失改变[17-18],且这种缺失与NPSLE的神经精神症状密切相关。Allison等[21]用抗Ⅰ型干扰素受体抗体治疗564Igi小鼠,发现模型小鼠MG激活、突触丢失和行为表型改变减少,表明MG依赖性突触的清除在SLE的行为改变中发挥作用,且Ⅰ型干扰素在其中起到一定的干预效果。
MG的吞噬作用主要由脑脊液中的抗体和补体介导。Matus等[23]的研究表明,抗核蛋白抗体能够通过与神经元表面核糖体蛋白样抗原结合而诱导神经元凋亡过程。凋亡的神经元细胞表面表达的磷脂酰丝氨酸(phosphatidylserine,PS)是可被MG识别并启动吞噬过程的经典配体之一[24]。PS通过乳脂球表皮生长因子8与MG表面的整合蛋白结合,引起MG骨架蛋白重构,使其发挥吞噬功能[25],因此MG对神经元和突触的吞噬与自身抗体的作用有关。经典补体途径参与健康脑内MG依赖的突触修剪,补体蛋白通过标记神经元间不适当的突触连接,介导MG的吞噬清除。有关狼疮患者的研究证实,在NPSLE中补体C1q标记受损伤的神经元,在MG对突触的吞噬过程中发挥关键作用[3]。由于Ⅰ型干扰素在MG的吞噬过程中有调节作用,在NPSLE中补体系统的紊乱和自身抗体的存在可能通过直接或间接刺激Ⅰ型干扰素途径,促进MG对突触的吞噬和清除。类似途径也可在炎症反应中被激活,故在NPSLE中MG活化引起周围炎症也能启动MG的吞噬过程,导致神经元和突触的丢失[26]。
MG的神经毒性 除了具有吞噬功能外,MG激活后还会释放炎症介质、细胞因子和趋化因子导致神经毒性。MG释放的炎症介质主要有活性氧和活性氮介质,二者都可以导致氧化损伤,对神经元产生毒性作用。MG活化释放的细胞因子包括IL-6、TNF-α、IL-1等,趋化因子主要有MCP-1和IP-10。有研究表明,NPSLE患者脑脊液中上述细胞因子和趋化因子水平明显升高[27-31],且较血浆中升高更为显著[32]。IL-6是参与B细胞活化、促进浆细胞分泌免疫球蛋白的细胞因子,还能促进TH17细胞的分化及抑制调节性T细胞的分化[33],最终导致慢性炎症,并参与脑脊液中自身抗体的产生。另外,自身抗体的产生还能刺激内皮细胞和神经元进一步分泌IL-6[34],形成恶性循环。TNF-α在NPSLE患者外周表现为保护作用,但在CNS中TNF-α上升会导致Ca2+通道异常开放[35],诱导神经元的凋亡,表现为损伤性作用。此外,TNF-α还能通过诱导局部炎症导致BBB损伤[36],使血浆中的致炎因子和炎症细胞进入脑脊液,加重CNS的免疫损伤。另一个重要的细胞因子是IL-1,它除了能激活星形胶质细胞形成胶质瘢痕外,还可以通过NF-κB通路进一步激活MG,使MG产生更多的促炎细胞因子[37]。综上,活化的MG分泌的细胞因子除了能够导致CNS的慢性炎症,还与MG激活互为因果。趋化因子的产生主要与自身抗体有关,自身抗体与神经元的结合除了能造成神经元损伤外,还能产生免疫复合物,诱导神经元产生IL-2,后者可激活MG分泌MCP-1和IP-10等[38]。MCP-1主要与T细胞表达的CCR2受体特异性结合,而IP-10主要与CXCR3受体结合,且上述分子在NPSLE患者中的表达都有所增加[39]。因此,MCP-1和IP-10主要通过吸引单核细胞和T细胞、启动Th1细胞的反应及刺激T细胞向中枢迁移在NPSLE的发病中发挥作用。
单核巨噬细胞系统在NPSLE中特定的分子的作用 在NPSLE中,TLRs及其下游通路的激活在自身抗体和炎症因子导致的MG活化中有重要意义。已知SLE患者中长链非编码RNA(long noncoding RNA,lncRNA)NEAT1表达增加,lncRNA NEAT1是一个由包括自身抗体在内的不同TLR配体诱导的早期应答基因,激活后作为炎症调节因子参与SLE发病的MAPK通路[40]。此外,还有多种lncRNA在NPSLE患者中差异性表达[41],提示lncRNA在NPSLE发病机制中有重要作用。CCAAT/增强子结合蛋白(CCAAT/enhancer binding proteins β,C/EBPβ)在TLR信号通路中起关键的调节作用,现已证明NF-κB的A20结合抑制剂(ABIN1)基因敲除小鼠C/EBPβ表达增加,并且出现狼疮样症状[42],提示C/EBPβ高表达与狼疮发生有关。SLE患者单核巨噬细胞系统C/EBPβ表达上调[43],表明C/EBPβ参与SLE的炎症反应过程。高迁移率族蛋白B1(high-mobility group box 1,HMGB1)是一种核内非组蛋白,由TLR激活的单核巨噬细胞释放,可作为损伤相关分子模式引起自身免疫反应和炎症反应[44]。在NPSLE中HMGB1主要通过与NMDAR和补体C1q形成复合物,介导MG对神经元树突的吞噬作用,并可以通过TLR4进一步激活MG[3]。目前有关单核巨噬细胞系统在NPSLE中特定分子机制的研究主要围绕外周血单核细胞展开,而针对MG的特定分子机制还需要进一步探索。
结语 综上所述,MG在NPSLE发病中的作用较为复杂:一方面参与对神经元和突触的吞噬而发挥作用;另一方面还能发挥神经毒性作用。目前虽然尚不能确定MG参与NPSLE的具体机制,但可以肯定的是NPSLE的发生与MG激活密切相关。目前有关SLE发病中单核巨噬细胞系统特定分子作用的研究主要集中在外周血单核细胞,今后应针对MG特定分子机制展开更加深入和广泛研究,以期探寻有效的NPSLE疗法。
作者贡献声明 司静怡 文献收集和整理,综述构思和撰写。朴思蓉,吴昊 综述构思和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
SCHWARTZ N, STOCK AD, PUTTERMAN C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions[J]. Nat Rev Rheumatol, 2019, 15(3): 137-152.
[DOI]
|
[2] |
UNTERMAN A, NOLTE JE, BOAZ M, et al. Neuropsychiatric syndromes in systemic lupus erythematosus: a meta-analysis[J]. Semin Arthritis Rheum, 2011, 41(1): 1-11.
[DOI]
|
[3] |
NESTOR J, ARINUMA Y, HUERTA TS, et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors[J]. J Exp Med, 2018, 215(10): 2554-2566.
[DOI]
|
[4] |
YANG TT, LIN C, HSU CT, et al. Differential distribution and activation of microglia in the brain of male C57BL/6J mice[J]. Brain Struct Funct, 2013, 218(4): 1051-1060.
[DOI]
|
[5] |
NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726): 1314-1318.
[DOI]
|
[6] |
WANG H, LIU C, HAN M, et al. TRAM1 promotes microglia M1 polarization[J]. J Mol Neurosci, 2016, 58(2): 287-296.
[DOI]
|
[7] |
RIZZI C, TIBERI A, GIUSTIZIERI M, et al. NGF steers microglia toward a neuroprotective phenotype[J]. Glia, 2018, 66(7): 1395-1416.
[DOI]
|
[8] |
YAO Y, WANG JB, XIN MM, et al. Balance between inflammatory and regulatory cytokines in systemic lupus erythematosus[J]. Genet Mol Res, 2016, 15(2).
[DOI]
|
[9] |
CLAYTON KA, VAN ENOO AA, IKEZU T. Alzheimer's disease: the role of microglia in brain homeostasis and proteopathy[J]. Front Neurosci, 2017, 11: 680.
[DOI]
|
[10] |
GENTILE A, DE VITO F, FRESEGNA D, et al. Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis[J]. Front Cell Neurosci, 2015, 9: 243.
|
[11] |
BARACZKA K, NÉKÁM K, POZSONYI T, et al. Investigation of cytokine (tumor necrosis factor-alpha, interleukin-6, interleukin-10) concentrations in the cerebrospinal fluid of female patients with multiple sclerosis and systemic lupus erythematosus[J]. Eur J Neurol, 2004, 11(1): 37-42.
[DOI]
|
[12] |
MERONI PL, TINCANI A, SEPP N, et al. Endothelium and the brain in CNS lupus[J]. Lupus, 2003, 12(12): 919-928.
[DOI]
|
[13] |
GULATI G, IFFLAND PN, JANIGRO D, et al. Anti-NR2 antibodies, blood-brain barrier, and cognitive dysfunction[J]. Clin Rheumatol, 2016, 35(12): 2989-2997.
[DOI]
|
[14] |
SANTER DM, YOSHIO T, MINOTA S, et al. Potent induction of IFN-alpha and chemokines by autoantibodies in the cerebrospinal fluid of patients with neuropsychiatric lupus[J]. J Immunol, 2009, 182(2): 1192-1201.
[DOI]
|
[15] |
DEIJNS SJ, BROEN J, KRUYT ND, et al. The immunologic etiology of psychiatric manifestations in systemic lupus erythematosus: A narrative review on the role of the blood brain barrier, antibodies, cytokines and chemokines[J]. Autoimmun Rev, 2020, 102592.
|
[16] |
SIBBITT WJ, BROOKS WM, KORNFELD M, et al. Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus[J]. Semin Arthritis Rheum, 2010, 40(1): 32-52.
[DOI]
|
[17] |
ERCAN E, MAGRO-CHECA C, VALABREGUE R, et al. Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites[J]. Brain, 2016, 139(Pt 5): 1447-1457.
|
[18] |
BALLOK DA, MA X, DENBURG JA, et al. Ibuprofen fails to prevent brain pathology in a model of neuropsychiatric lupus[J]. J Rheumatol, 2006, 33(11): 2199-2213.
|
[19] |
Arinuma Y. What are the latest clinical findings regarding the association of neurotoxic brain antibodies found in the cerebrospinal fluid in patients with autoimmune disorders?[J]. Current opinion in neurology, 2020, 33(3): 347-352.
[DOI]
|
[20] |
WANG X, LI Y, WANG Y, et al. Intracerebroventricular administration of lupus serum induces microglia activation and leukocyte adhesion in the cerebromicrovasculature of mice[J]. J Neuroimmunol, 2019, 334: 576994.
[DOI]
|
[21] |
BIALAS AR, PRESUMEY J, DAS A, et al. Microglia-dependent synapse loss in type Ⅰ interferon-mediated lupus[J]. Nature, 2017, 546(7659): 539-543.
[DOI]
|
[22] |
HONG S, BEJA-GLASSER VF, NFONOYIM BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models[J]. Science, 2016, 352(6286): 712-716.
[DOI]
|
[23] |
MATUS S, BURGOS PV, BRAVO-ZEHNDER M, et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis[J]. J Exp Med, 2007, 204(13): 3221-3234.
[DOI]
|
[24] |
FADOK VA, VOELKER DR, CAMPBELL PA, et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages[J]. J Immunol, 1992, 148(7): 2207-2216.
|
[25] |
SPITTAU B, RILKA J, STEINFATH E, et al. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8[J]. Glia, 2015, 63(1): 142-153.
[DOI]
|
[26] |
PRESUMEY J, BIALAS AR, CARROLL MC. Complement system in neural synapse elimination in development and disease[J]. Adv Immunol, 2017, 135: 53-79.
|
[27] |
HIROHATA S, ARINUMA Y, YANAGIDA T, et al. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus[J]. Arthritis Res Ther, 2014, 16(2): R77.
[DOI]
|
[28] |
KATSUMATA Y, HARIGAI M, KAWAGUCHI Y, et al. Diagnostic reliability of cerebral spinal fluid tests for acute confusional state (delirium) in patients with systemic lupus erythematosus: interleukin 6(IL-6), IL-8, interferon-alpha, IgG index, and Q-albumin[J]. J Rheumatol, 2007, 34(10): 2010-2017.
|
[29] |
DELLALIBERA-JOVILIANO R, DOS RM, CUNHA FQ, et al. Kinins and cytokines in plasma and cerebrospinal fluid of patients with neuropsychiatric lupus[J]. J Rheumatol, 2003, 30(3): 485-492.
|
[30] |
FRAGOSO-LOYO H, RICHAUD-PATIN Y, OROZCO-NARVÁEZ A, et al. Interleukin-6 and chemokines in the neuropsychiatric manifestations of systemic lupus erythematosus[J]. Arthritis Rheum, 2007, 56(4): 1242-1250.
[DOI]
|
[31] |
OKAMOTO H, IIKUNI N, KAMITSUJI S, et al. IP-10/MCP-1 ratio in CSF is an useful diagnostic marker of neuropsychiatric lupus patients[J]. Rheumatology (Oxford), 2006, 45(2): 232-234.
[DOI]
|
[32] |
YOSHIO T, OKAMOTO H, KURASAWA K, et al. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus[J]. Lupus, 2016, 25(9): 997-1003.
[DOI]
|
[33] |
ARINGER M, LEUCHTEN N, DÖRNER T. Biologicals and small molecules for systemic lupus erythematosus[J]. Z Rheumatol, 2020, 79(3): 232-240.
[DOI]
|
[34] |
HIROHATA S, HAYAKAWA K. Enhanced interleukin-6 messenger RNA expression by neuronal cells in a patient with neuropsychiatric systemic lupus erythematosus[J]. Arthritis Rheum, 1999, 42(12): 2729-2730.
[DOI]
|
[35] |
OLMOS G, LLADÓ J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity[J]. Mediators Inflamm, 2014, 2014: 861231.
|
[36] |
HARTUNG HP, REINERS K, ARCHELOS JJ, et al. Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging[J]. Ann Neurol, 1995, 38(2): 186-193.
[DOI]
|
[37] |
CARTY M, BOWIE AG. Evaluating the role of Toll-like receptors in diseases of the central nervous system[J]. Biochem Pharmacol, 2011, 81(7): 825-837.
[DOI]
|
[38] |
DEIJNS SJ, BROEN J, KRUYT ND, et al. The immunologic etiology of psychiatric manifestations in systemic lupus erythematosus: a narrative review on the role of the blood brain barrier, antibodies, cytokines and chemokines[J]. Autoimmun Rev, 2020, 19(8): 102592.
[DOI]
|
[39] |
ⅡKUNIN, OKAMOTOH, YOSHIOT, 等. Raised monocyte chemotactic protein-1(MCP-1)/CCL2 in cerebrospinal fluid of patients with neuropsychiatric lupus[J]. Ann Rheum Dis, 2006, 65(2): 253-256. [CNKI]
|
[40] |
ZHANG F, WU L, QIAN J, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus[J]. J Autoimmun, 2016, 75: 96-104.
[DOI]
|
[41] |
GENG L, XU X, ZHANG H, et al. Comprehensive expression profile of long non-coding RNAs in peripheral blood mononuclear cells from patients with neuropsychiatric systemic lupus erythematosus[J]. Ann Transl Med, 2020, 8(6): 349.
[DOI]
|
[42] |
ZHOU J, WU R, HIGH AA, et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease[J]. Proc Natl Acad Sci USA, 2011, 108(44): E998-E1006.
[DOI]
|
[43] |
QIAN T, CHEN Y, SHI X, et al. C/EBP β mRNA expression is upregulated and positively correlated with the expression of TNIP1/TNFAIP3 in peripheral blood mononuclear cells from patients with systemic lupus erythematosus[J]. Exp Ther Med, 2016, 12(4): 2348-2354.
[DOI]
|
[44] |
KIM SY, SON M, LEE SE, et al. High-mobility group box 1-induced complement activation causes sterile inflammation[J]. Front Immunol, 2018, 9: 705.
[DOI]
|