文章快速检索     高级检索
   复旦学报(医学版)  2021, Vol. 48 Issue (5): 648-652, 659      DOI: 10.3969/j.issn.1672-8467.2021.05.012
0
Contents            PDF            Abstract             Full text             Fig/Tab
颅脑创伤患者伤后早期血浆中内皮细胞特异性分子-1浓度变化及临床价值
茹德文 , 颜玉峰 , 沈晓 , 刘猛 , 王尔松     
复旦大学附属金山医院神经外科 上海 201508
摘要目的 探讨颅脑创伤(traumatic brain injury,TBI)患者伤后早期血浆中内皮细胞特异性分子1(endothelial cell specific molecule-1,ESM-1)的浓度变化及其与创伤严重程度和预后的关系。方法 选取2017年6月至2019年12月复旦大学附属金山医院神经外科收治的TBI患者94人作为研究对象,收集患者临床资料,根据患者入院格拉斯哥昏迷评分(Glasgow Coma Score,GCS)分为轻度TBI组(n=36)、中度TBI组(n=32)和重度TBI组(n=26);按照格拉斯哥预后评分(Glasgow Outcome Score,GOS)将所有TBI患者分为预后良好组(GOS 4~5分)和预后不良组(GOS 1~3分)。48例放置颅内压(intracranial pressure,ICP)探头的患者,根据ICP情况分为ICP控制组(ICP ≤ 15 mmHg)、ICP升高组(15 mmHg < ICP < 30 mmHg)以及ICP顽固性升高组(ICP ≥ 30 mmHg)。选取医院同期体检健康者40例作为健康对照组。采用液相蛋白芯片法检测血浆ESM-1浓度。结果 与轻度TBI组[(235.71±45.12)pg/mL]和健康对照组[(227.08±55.49)pg/mL)]相比,中、重度TBI组血浆ESM-1浓度[(304.95±81.57)pg/mL、(397.57±53.16)pg/mL]均显著升高(P < 0.01);重度TBI组血浆ESM-1浓度显著高于中度TBI组(P < 0.01)。血浆ESM-1浓度与TBI患者入住NICU天数及总住院天数呈正相关;而与入院时GCS呈负相关。同ICP控制组(n=20)相比,ICP升高组(n=18)和ICP顽固性升高组(n=10)的血浆ESM-1水平均显著升高(P < 0.01),且ICP顽固性升高组的血浆ESM-1水平显著高于ICP升高组。预后不良组(n=18)患者血浆ESM-1水平显著高于预后良好组(n=76,P < 0.01)。血浆ESM-1浓度对TBI患者预后不良预测的AUC为0.884,截断值为357.50 pg/mL,敏感度为83.33%,特异度为78.95%。结论 TBI患者伤后早期血浆ESM-1浓度升高,并与创伤严重程度相关。血浆ESM-1浓度越高,TBI患者ICP控制难度越大、预后越差。血浆ESM-1水平可作为判断TBI伤情严重程度和预后的潜在评估指标。
关键词颅脑创伤(TBI)    内皮细胞特异性分子1(ESM-1)    颅内压(ICP)    
Changes of plasma endothelial cell specific molecule-1 level at early stage after injury and its clinical value in patients with traumatic brain injury
RU De-wen , YAN Yu-feng , SHEN Xiao , LIU Meng , WANG Er-song     
Department of Neurosurgery, Jinshan Hospital, Fudan University, Shanghai 201508, China
Abstract: Objective To investigate the changes of plasma endothelial cell specific molecule-1 (ESM-1) level at early stage after injury in patients with traumatic brain injury (TBI) and its relationships with the severity and prognosis of TBI. Methods A total of 94 TBI patients, admitted to the Department of Neurosurgery, Jinshan Hospital of Fudan University from Jun 2017 to Dec 2019, were recruited and their clinical data were collected.Then, all of the patients were divided into mild TBI group (n=36), moderate TBI group (n=32) and severe TBI group (n=26) according to admission Glasgow Coma Score (GCS).According to the Glasgow Outcome Score (GOS), all TBI patients were divided into good prognosis group (GOS 4-5) and poor prognosis group (GOS 1-3).Forty-eight patients with intracranial pressure(ICP) probe were divided into controlled ICP group (ICP ≤ 15 mmHg), elevated ICP group (15 mmHg < ICP < 30 mmHg) and refractory elevated ICP (ICP ≥ 30 mmHg).Forty healthy subjects were recruited as the control group in the same period.Plasma ESM-1 concentrations were detected by Luminex xMAP technology. Results Compared with the mild TBI group[(235.71±45.12 pg/mL)] and the healthy control group[(227.08±55.49) pg/mL), plasma ESM-1 concentrations of the moderate and severe TBI groups[(304.95±81.57) pg/mL and (397.57±53.16) pg/mL, respectively] were significantly higher (P < 0.01), and the latter was higher than the fonner.Plasma ESM-1 concentrations of the severe TBI group were significantly higher than that in the moderate TBI group (P < 0.01).Plasma ESM-1 concentration was positively correlated with NICU days and total in-patient days.However, there was a negative correlation with admission GCS.Compared with the controlled ICP group (n=20), the plasma ESM-1 levels of the elevated ICP group (n=18) and the refractory elevated ICP group (n=10) were significantly increased (P < 0.01), and the latter was higher than the former.In addition, plasma ESM-1 levels of TBI patients with poor outcome (n=18) were significantly higher than that with good outcome (n=76, P < 0.01).The AUC area of plasma ESM-1 level on poor outcome of TBI patients was 0.884, the truncation value was 357.50 pg/mL, the sensitivity was 83.33%, and the specificity was 78.95%. Conclusion Plasma ESM-1 level is elevated in early stage of TBI and associated with the severity of TBI.It is hard to control the ICP and to obtain a good outcome in TBI patients with high ESM-1 levels. Plasma ESM-1 level may be a potential biomarker for the evaluation of severity and prognosis of TBI patients.
Key words: traumatic brain injury (TBI)    endothelial cell specific molecule-1 (ESM-1)    intracranial pressure (ICP)    

颅脑创伤(traumatic brain injury,TBI)的致残率和死亡率在创伤中均居于首位,已成为严重的全球性公共卫生问题[1-2]。快速准确地判断TBI患者的伤情程度和预后对制订其后续治疗决策和降低致残率、致死率至关重要。目前,临床上主要根据头颅CT和格拉斯哥昏迷评分(Glasgow Coma Score,GCS)进行TBI的伤情判断和评估,但头颅CT检查不能实时判断病情进展且频繁检查带来较大辐射风险[3-4],而GCS受主观因素影响较大[5]。因此,寻找准确、便捷的检测指标对判断TBI患者病情进展和评估预后有重要意义。目前认为,TBI患者脑微血管内皮细胞(brain microvascular endothelial cells,BMEC)损伤活化后引起的炎性反应和脑微循环紊乱在继发性脑损伤的发生发展过程中起重要作用[6-8]。由内皮细胞表达和释放的内皮细胞特异性分子-1(endothelial cell specific molecule-1,ESM-1)具有非常广泛的生物学活性,与炎症过程的发生发展密切相关,被认为是微血管内皮细胞激活的标记物[9]。然而,ESM-1在脑损伤中的作用方面的研究还非常有限。本研究通过测定TBI患者伤后24 h内的血浆ESM-1浓度,来探讨伤后早期ESM-1浓度变化与TBI严重程度、预后等的关系,为TBI患者治疗及预后评估提供参考指标。

资料和方法

临床资料  本研究为前瞻性、单中心、观察性研究。选取2017年6月至2019年12月复旦大学附属金山医院神经外科收治的TBI患者作为研究对象。纳入标准:(1)年龄大于18周岁;(2)有明确外伤史且无严重复合损伤的TBI患者;(3)受伤12 h内入院且有TBI的典型影像学特征,如硬膜下血肿、脑挫伤或蛛网膜下腔出血等。排除标准:(1)合并有心血管系统、肾脏、肝脏、内分泌系统疾病者;(2)创伤前发生感染性疾病者;(3)合并恶性肿瘤者;(4)妊娠期或哺乳期妇女。根据纳入和排除标准筛选,共有94例TBI患者加入本研究,其中男性61例(64.9%)、女性33例(35.1%),平均年龄(43.23±17.69)岁。主要TBI类型包括硬膜下血肿24例,硬膜外血肿8例,脑内血肿或脑挫伤20例,弥漫性轴索损伤6例,颅骨骨折12例,创伤性蛛网膜下腔出血24例。其中41例(43.62%)伴有多种类型颅脑损伤(如颅骨骨折合并硬膜外血肿)。根据入院时GCS分为轻度(13~15分,n=36)、中度(9~12分,n=32)、重度(3~8分,n=26)3个TBI组;选取医院同期体检健康者40例(男性24例,女性16例)作为对照组。对照组平均年龄(51.70±18.46)岁。研究方案获得复旦大学附属金山医院伦理委员会批准(批准号:2019-S32)。所有参加者或其法定代理人均签署书面知情同意书。

治疗方案和ICP监测  患者入院后即刻行神经系统查体及头颅CT检查,按照《中国颅脑创伤临床救治指南》予以常规止血、脱水、促醒、脑保护等治疗。根据颅脑创伤后颅内压监测指征,对于需要施行颅内压(intracranial pressure,ICP)监护的TBI患者,于伤后24 h内行ICP探头(Codman Microsensors ICP Transducer,美国Codman & Shurtleff公司)置入术,持续ICP监测,并记录ICP值。如病情需要,可继续行颅内血肿清除等手术治疗。术后患者入住神经重症监护病房(neurosurgery intensive care unit,NICU),治疗措施包括:(1)床头抬高30°;(2)ICP≥20 mmHg(1 mmHg=0.133 kPa,下同)时及时行CSF外引流、适当地过度通气(PaCO2维持在30~35 mmHg),必要时使用甘露醇(0.25 g/kg,每天使用少于6次);(3)必要时可使用镇静剂,如咪达唑仑(0.05 mg·kg-1·h-1)等;(4)中心静脉压(central venous pressure,CVP)维持在5~10 mmHg;(5)脑灌注压(cerebral perfusion pressure,CPP)维持在50 mmHg以上。连续3天ICP监测值< 15 mmHg方可拔除ICP探头。

预后评估  随访6个月,按照格拉斯哥预后评分(Glasgow Outcome Score,GOS)将所有TBI患者分为预后良好组(GOS 4~5分)和预后不良组(GOS 1~3分),其中预后不良组包括住院期间和随访期间的死亡患者。

标本采集及ESM-1浓度检测  患者入院后(伤后24 h内)采集静脉血5 mL,置入乙二胺四乙酸(EDTA)抗凝管,经离心机离心(2 500×g,15 min)后提取上层血浆,-80 ℃冰箱储存待测。所有标本收集完成后,采用液相蛋白芯片法(MILLIPLEXMAP试剂盒,Cat.# HCVD1MAG-67K,美国EMD Millipore公司)检测所有标本ESM-1浓度。

统计学分析  采用SPSS 16.0软件进行统计学分析。组间年龄和性别构成比较采用χ2检验,相关性分析采用Pearson检验,两组间比较采用独立样本t检验,多组间比较采用LSD-t检验。采用受试者工作特征曲线(ROC曲线)预测血浆ESM-1浓度、入院GCS评分对TBI患者不良预后的诊断价值。计量数据用x±s表示。P < 0.05为差异有统计学意义。

结果

颅脑创伤各组及对照组间血浆ESM-1浓度比较  4组受试者年龄、性别构成经χ2检验,差异无统计学意义(P > 0.05),具有可比性。颅脑创伤各组间在血标本采集时间上的差异无统计学意义。健康对照组血浆ESM-1浓度为(227.08±55.49)pg/mL。轻度、中度、重度TBI组的血浆ESM-1浓度分别为(235.71±45.12)pg/mL、(304.95±81.57)pg/mL、(397.57±53.16)pg/mL。轻度TBI组与健康对照组血浆ESM-1浓度比较,差异无统计学意义。中度、重度TBI组血浆ESM-1浓度均显著高于健康对照组和轻度TBI组(P < 0.01);重度TBI组血浆ESM-1浓度显著高于中度TBI组(P < 0.01),见图 1

图 1 TBI各组及健康对照组血浆ESM-1浓度比较 Fig 1 Comparisons of plasma ESM-1 concentration among TBI groups and healthy control group

TBI患者血浆ESM-1水平与相关临床因素间的相关性分析  重度TBI患者入住NICU时间显著长于中度TBI患者;中度、重度TBI患者总住院时间显著长于轻度TBI患者,而重度TBI患者住院时间也显著长于中度TBI患者。Pearson相关分析结果显示:TBI患者血浆ESM-1浓度与入住NICU天数及总住院天数呈正相关;而与入院时GCS呈负相关,见表 1

表 1 TBI患者NICU住院时间、总住院时间、入院GCS与血浆ESM-1浓度的相关性分析 Tab 1 NICU days, total in-patient days, admission GCS and their correlation analyses with ESM-1 concentrations  
(x±s)
Item Mild TBI Moderate TBI Severe TBI ESM-1 association
NICU days 8.34±3.28 19.28±8.64(1) r= 0.423(4)
Total in-patient days 8.76±4.17 18.36±9.72(2) 22.42±9.38(3) r= 0.546(4)
Admission GCS 13.84±0.92 10.56±1.04 6.22±1.08 r= - 0.318(4)
  (1)P < 0.01,vs. Moderate TBI patients;(2)P < 0.01,vs. Mild TBI patients;(3)P < 0.05,vs. Mild and Moderate TBI patients;(4) Pearson correlation coefficient.

不同颅内压组TBI患者血浆ESM-1浓度比较  所有行ICP监测的患者(n=48)每半小时采集一次ICP数值,根据其伤后24 h内的持续性最高颅内压(排除体位不当、气道阻塞、引流不通畅、探头漂移等影响因素),将TBI患者分为ICP控制组(ICP≤15 mmHg,n=20)、ICP升高组(15 mmHg < ICP < 30 mmHg,n=18)和ICP顽固性升高组(ICP≥30 mmHg,n=10)。结果显示:同ICP控制组[(245.26±31.66)pg/mL]相比,ICP升高组[(319.67±58.26)pg/mL)]和ICP顽固性升高组[(435.90±52.84)pg/mL]的血浆ESM-1水平均显著升高(P < 0.01);ICP顽固性升高组的血浆ESM-1水平也显著高于ICP升高组(P < 0.01),见图 2

图 2 不同ICP组TBI患者血浆ESM-1浓度比较 Fig 2 Comparisons of plasma ESM-1 concentration in TBI patients with different ICPs

TBI患者血浆ESM-1浓度与预后的关系  预后不良组(n=18)TBI患者血浆ESM-1水平[(404.98±62.23)pg/mL]显著高于预后良好组[n=76,(282.40±78.55)pg/mL],差异有统计学意义(P < 0.01)。

采用ROC曲线预测血浆ESM-1浓度和入院GCS对预后不良的诊断价值  结果显示,入院GCS对TBI患者预后不良预测的AUC为0.873,敏感度为72.22%,特异度为82.89%,95%CI为0.783~0.963;血浆ESM-1浓度对TBI患者预后不良预测的AUC为0.884,截断值为357.50 pg/mL,敏感度为83.33%,特异度为78.95%,约登指数为0.623,95%CI为0.801~0.967(图 3)。这表明血浆ESM-1对TBI预后不良的预测价值较入院GCS更高,且具有较高敏感度和特异度。

图 3 血浆ESM-1浓度和入院GCS评分对TBI患者不良预后预测的ROC曲线 Fig 3 ROC curve of plasma ESM-1 concentration and admission GCS in predicting poor outcomes of TBI patients
讨论

内皮细胞特异性分子-1(ESM-1)又称为Endocan,1996年由法国科学家Lassalle从人脐静脉内皮细胞中分离出来,是一种硫酸皮肤素黏蛋白[10]。许多研究表明,多种肿瘤、脓毒症、全身炎症反应综合征等疾病中ESM-1存在高表达[11-13]。ESM-1是机体重要的炎症介质之一,可使内皮细胞活化,被认为是内皮细胞损害或激活的标志[14]。内皮细胞的活化可导致微血管通透性增加,白细胞黏附和迁移,活性氧家族活化,细胞因子大量产生,最终导致微血管阻塞、微循环出血和组织循环状态恶化[15]

ESM-1作为重要的炎症介质,在调节TBI后脑微血管内皮细胞与白细胞黏附、内皮细胞活化等过程中起重要作用。因此,研究ESM-1与TBI的关系有助于进一步探明TBI后继发的脑组织缺血及脑代谢变化机制,及时有效地治疗颅脑损伤患者的继发性脑损伤,改善TBI患者的预后。Lele等[16]研究28例儿童TBI患者,发现重度TBI患者血浆ESM-1浓度升高,这种TBI后ESM-1浓度变化可能跟创伤严重程度相关。但是,有关成年TBI患者伤后血浆ESM-1浓度变化情况尚未见报道。我们研究了94例成年TBI患者伤后早期的ESM-1浓度变化,结果显示:中重度TBI患者血浆ESM-1浓度均显著升高,且重度TBI患者血浆ESM-1浓度明显高于中度TBI患者,而轻度TBI患者血浆ESM-1浓度和健康对照组相比无明显差异。进一步分析发现,TBI患者血浆ESM-1浓度与入住NICU天数及总住院天数呈显著正相关,而与入院时GCS呈明显负相关。这个结果与Lele等[16]的研究结果相似,说明成人TBI患者血浆ESM-1浓度升高情况与儿童TBI患者类似,且ESM-1浓度增高与TBI患者的伤情严重程度密切相关。

我们根据TBI患者的ICP情况进行分组分析,结果显示:ICP升高组和ICP顽固性升高组的血浆ESM-1水平较ICP控制组均显著升高,且ICP顽固性升高组的血浆ESM-1水平显著高于ICP升高组。这表明,TBI后血浆ESM-1浓度升高与ICP升高密切相关,且血浆ESM-1浓度越高,ICP控制难度越大。原因可能是TBI后ESM-1浓度升高,激活了受损的内皮细胞,产生一系列级联反应,引起脑微循环障碍,从而引起继发性脑组织缺血、水肿,导致ICP增高。

我们进一步研究显示:预后不良组TBI患者血浆ESM-1水平显著高于预后良好组。血浆ESM-1水平升高和TBI患者不良预后有相关性,这提示TBI后脑炎性反应对于患者的恢复是有害的,同时也提示针对此炎性反应的治疗可能改善TBI患者的预后。通过ROC曲线分析显示,血浆ESM-1浓度对TBI患者预后不良预测的AUC为0.884,敏感度为83.33%,特异度为78.95%;入院GCS对TBI患者预后不良预测的AUC为0.873,敏感度为72.22%,特异度为82.89%。结果说明,血浆ESM-1对TBI预后不良的预测价值较入院GCS更高,且具有较高敏感度和特异度,可作为其预后不良评估的潜在检测指标。

综上所述,TBI患者伤后早期血浆ESM-1浓度升高,并与创伤严重程度相关。血浆ESM-1浓度越高,患者ICP控制难度越大、预后越差。血浆ESM-1水平可作为判断TBI伤情严重程度和预后的潜在评估指标。

作者贡献声明  茹德文   数据统计和分析,论文撰写和修订。颜玉峰,沈晓  数据采集和整理。刘猛  数据统计,模型运算。王尔松  论文构思和修订。

利益冲突声明   所有作者均声明不存在利益冲突。

参考文献
[1]
TARAPORE PE, VASSAR MJ, COOPER S, et al. Establishing a traumatic brain injury program of care: benchmarking outcomes after institutional adoption of evidence-based guidelines[J]. J Neurotrauma, 2016, 33(22): 2026-2033. [DOI]
[2]
MAJDAN M, RUSNAK M, BRAZINOVA A, et al. Severity, causes and outcomes of traumatic brain injuries occurring at different locations: implications for prevention and public health[J]. Cent Eur J Public Health, 2015, 23(2): 142-148. [DOI]
[3]
SMITH-BINDMAN R, LIPSON J, MARCUS R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer[J]. Arch Intern Med, 2009, 169(22): 2078-2086. [DOI]
[4]
NAWFEL RD, YOUNG GS. Measured head CT/CTA skin dose and intensive care unit patient cumulative exposure[J]. AJNR Am J Neuroradiol, 2017, 38(3): 455-461. [DOI]
[5]
PEDERSEN AR, SEVERINSEN K, NIELSEN JF. The effect of age on rehabilitation outcome after traumatic brain injury assessed by the Functional Independence Measure (FIM)[J]. Neurorehabil Neural Repair, 2015, 29(4): 299-307. [DOI]
[6]
KU JM, TAHER M, CHIN KY, et al. Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice[J]. Clin Sci (Lond), 2016, 130(17): 1545-1558. [DOI]
[7]
ZHIYUAN Q, QINGYONG L, SHENGMING H, et al. Protective effect of rhEPO on tight junctions of cerebral microvascular endothelial cells early following traumatic brain injury in rats[J]. Brain Inj, 2016, 30(4): 462-467. [DOI]
[8]
马辉, 钱志远, 黄胜明, 等. 大鼠颅脑外伤后早期脑微血管内皮细胞功能和结构的改变[J]. 中华创伤杂志, 2010, 26(7): 635-639. [DOI]
[9]
SCHERPEREEL A, DEPONTIEU F, GRIGORIU B, et al. Endocan, a new endothelial marker in human sepsis[J]. Crit Care Med, 2006, 34(2): 532-537. [DOI]
[10]
LASSALLE P, MOLET S, JANIN A, et al. ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines[J]. J Biol Chem, 1996, 271(34): 20458-20464. [DOI]
[11]
MIHAJLOVIC DM, LENDAK DF, BRKIC SV, et al. Endocan is useful biomarker of survival and severity in sepsis[J]. Microvasc Res, 2014, 93: 92-97. [DOI]
[12]
MIHAJLOVIC D, BRKIC S, LENDAK D, et al. Endothelial biomarkers in the light of new sepsis definition[J]. Biomark Med, 2019, 13(5): 341-351. [DOI]
[13]
OZAKI K, TOSHIKUNI N, GEORGE J, et al. Serum endocan as a novel prognostic biomarker in patients with hepatocellular carcinoma[J]. J Cancer, 2014, 5(3): 221-230. [DOI]
[14]
CARRILLO LM, ARCINIEGAS E, ROJAS H, et al. Immunolocalization of endocan during the endothelial-mesenchymal transition process[J]. Eur J Histochem, 2011, 55(2): e13. [DOI]
[15]
章志丹, 马晓春. 脓毒症血管内皮损伤与微循环功能障碍[J]. 中国危重病急救医学, 2011, 23(2): 125-128.
[16]
LELE AV, ALUNPIPATTHANACHAI B, QIU Q, et al. Plasma levels, temporal trends and clinical associations between biomarkers of inflammation and vascular homeostasis after pediatric traumatic brain injury[J]. Dev Neurosci, 2019, 41(3-4): 177-192. [DOI]

文章信息

茹德文, 颜玉峰, 沈晓, 刘猛, 王尔松
RU De-wen, YAN Yu-feng, SHEN Xiao, LIU Meng, WANG Er-song
颅脑创伤患者伤后早期血浆中内皮细胞特异性分子-1浓度变化及临床价值
Changes of plasma endothelial cell specific molecule-1 level at early stage after injury and its clinical value in patients with traumatic brain injury
复旦学报医学版, 2021, 48(5): 648-652, 659.
Fudan University Journal of Medical Sciences, 2021, 48(5): 648-652, 659.
Corresponding author
WANG Er-song, E-mail:wersong@aliyun.com.
基金项目
上海市金山区卫健委青年项目(JSKJ-KTQN-2018-14)
Foundation item
This work was supported by the Youth Program of Jinshan District Health Commission of Shanghai Municipality (JSKJ-KTQN-2018-14)

工作空间