据最近统计,慢性神经病理痛在全球人口中的发生率达到6.9%~10%,对患者生活和社会经济造成重大负担[1],而目前临床上尚无很好的治疗手段,现常用的治疗药物仍以阿片类、抗抑郁类、抗癫痫类等药物为主[2],这些药物常常效果不佳、针对少部分患者有效且伴有副作用[3]。不同诱因可导致神经病理痛,如切断或损伤神经、代谢综合征、病毒感染、自体免疫反应等,表现症状包括阵发性或持续性自发痛,触、冷、热痛觉超敏(allodynia)及痛觉过敏(hyperalgesia)[3-5],并且很多转为慢性疼痛,在许多患者中还会引发焦虑、抑郁等情绪障碍的共病[6-7],给患者带来巨大的痛苦。
针刺疗法起源于中国,在亚洲国家有悠久的临床应用基础,对于多种疾病被证实有较好的疗效,其中包括对慢性疼痛的治疗。在基础研究中,大量证据表明电针可以有效缓解多种神经病理痛动物模型中的触诱发痛及冷、热痛敏,包括模拟外周神经压迫或切断损伤的结扎或切断类模型、紫杉醇化疗痛、糖尿病神经病理痛、疱疹后遗神经病理痛等模型[8-13]。
由于近年来电针治疗神经病理痛的机制研究积累了大量重要的进展,但尚未见有文献对其归纳总结,本文对多种神经损伤模型中电针镇痛的机制研究进行总结,并对存在于外周、脊髓至高级中枢各个层面的镇痛机制进行综述。
外周机制
调节离子通道的表达与活性 神经病理痛的发病机制之一是外周神经的病变,其中初级传入神经上离子通道的活性和表达量的改变可导致异位放电,进而产生痛觉敏化。已知瞬时感受器电位香草酸受体(transient receptor potential vanilloid,TRPV)家族离子通道参与介导各种疼痛,包括神经病理痛。一项最近的研究中发现电针可以下调紫杉醇化疗痛模型中背根神经节(dorsal root ganglion,DRG)过表达的TRPV1通道,并可抑制其功能活性[14]。在另一项研究中曾观察到类似的现象:对脊神经结扎模型(spinal nerve ligation,SNL)大鼠进行电针治疗,在结扎神经前后的未受损DRG中TRPV1的过表达均受到抑制[15]。
在三叉神经病理痛模型中,连续电针14天可显著减少半月神经节中超极化激活的环核苷酸门控阳离子通道(hyperpolarization-activated cyclic nucleotide-gated channel,HCN)家族通道的表达,而该通道可通过内向电流诱发神经病理痛的异位放电[11]。
调节外周促炎/抑炎细胞因子的平衡 不同的神经损伤模型中,在mRNA和蛋白水平均观察到电针对DRG中促炎细胞因子IL-1β和IL-6的抑制效果,而2 Hz低频电针可以上调神经损伤后表达降低的IL-10[16-18],这种对于DRG促炎/抑炎细胞因子平衡的调节可有效缓解疼痛。
对外周其他通路的调节 由既往研究已知DRG中ATP门控的P2X3型受体(ATP-gated P2X3 receptor,P2X3R)在慢性压迫性损伤模型(chronic constriction injury,CCI)、SNL、糖尿病神经病理痛等模型中表达增加,并促进痛觉信号向中枢的传递,而对于这些模型给予电针均可部分甚至完全反转P2X3R的上调,进而发挥镇痛功效[19-20]。
在化疗痛的发展中观察到核因子E2相关因子2(nuclear factor erythroid 2-related factor 2,Nrf2)/抗氧化反应序列元件(antioxidant response element,ARE)抗氧化通路受到破坏,外周氧化应激产物堆积引发痛敏;而电针可以修复Nrf2/ARE的活性,从而抑制超氧化物歧化酶(superoxide dismutase,SOD)等氧化产物的上调,缓解神经病理痛[13]。
在糖尿病神经病理痛模型中,电针能下调坐骨神经中葡萄糖调节蛋白78(glucose-regulated protein 78,GRP78)和caspase-12,显著抑制外周神经细胞的凋亡,表现出神经保护作用[12]。
中枢机制
抑制脊髓胶质细胞激活 近些年来,大量对于电针镇痛机制的研究涉及脊髓胶质细胞活性的调节,其中通过多种手段检测到电针后星形胶质细胞的特异性标记物胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)和小胶质细胞标记物离子钙接头蛋白抗原(ionized calcium-binding adaptor molecule 1,Iba-1)、分化抗原簇分子11b(cluster of differentiation molecule 11b,CD-11,又名OX-42)、跨膜蛋白119(transmembrane protein 119,TMEM119)等在mRNA及蛋白水平的下调[8-9, 21-24]。在各种模型上均观察到一致的证据,证明电针可以通过抑制星形胶质细胞和小胶质细胞的病理激活发挥镇痛作用[8, 10, 25-26]。
小胶质细胞中的转录因子干扰素调节因子8(interferon regulatory factor 8,IRF8)和表面趋化因子受体CX3CR1对小胶质细胞激活发挥重要作用,而电针可以抑制选择性神经损伤模型(spared nerve injury,SNI)中这些分子的过表达[27]。另有研究表明,电针可以抑制SNI和化疗痛模型中脊髓Toll样受体4(toll-like receptor 4,TLR4)/髓样分化因子88(myeloid differentiation factor-88,MyD88)/核转录因子κB(nuclear factor κB,NF-κB)通路的激活,该通路位于小胶质细胞[21, 28]。电针还能下调脊髓中高迁移率族蛋白B1(high mobility group box 1,HMGB1),该分子能通过与小胶质细胞表面跨膜受体TLR4结合激活小胶质细胞,并参与介导神经病理痛的发展[29-30]。电针抑制星胶质细胞激活的作用被证实可由腺苷酸A1受体介导,鞘内给予特异性拮抗剂阻断A1受体可以反转电针对星胶质细胞的抑制,并抵消电针的镇痛效果[31]。
电针对神经损伤后小胶质细胞、星胶质细胞病理性激活的抑制作用将进一步对胶质细胞中的痛相关分子及通路产生负向调节,如丝裂原活化蛋白激酶p38(p38 mitogen-activated protein kinase,p38 MAPK)通路等[24];而一些介导胶质细胞-神经元通讯的痛相关通路也受到抑制,如脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)/原肌球蛋白相关激酶受体B(tropomyosin-related kinase receptor B,TrkB)通路等[26]。
调节脊髓炎症因子 有证据表明,电针14天可以显著降低化疗痛大鼠脊髓中IL-1β和TNF-α的蛋白含量[21]。在SNI和CCI模型中,脊髓IL-1β在mRNA及蛋白水平的上调均被电针有效抑制[22, 31-32],SNL、CCI模型中IL-6蛋白在给予电针后显著下调[23, 31]。对于电针抑制炎性因子的机制,有研究发现电针能通过抑制脊髓P2X7型离子通道阳性的小胶质细胞激活从而减少IL-18和IL-1β的合成与释放[33],而星形胶质细胞A1受体参与介导电针对TNF-α的调节[31]。
电针对于SNI损伤后脊髓抑炎因子IL-10的表达与释放有促进作用,且阻断IL-10可以翻转电针的镇痛效果,而进一步观察证实电针仅上调表达在小胶质细胞的IL-10,而对星形胶质细胞中的IL-10无显著影响[34]。本实验室在小鼠足跖切口痛模型上观察到电针后IL-10 mRNA及蛋白水平上调,鞘内阻断IL-10能翻转电针对脊髓LTP的抑制和对机械痛敏的缓解,提示IL-10是电针发挥镇痛作用的重要靶点之一[35]。
激活内源性阿片系统 对于电针激活内源性阿片肽系统的研究之前有大量报道,如低频(2 Hz)和高频(100 Hz)电针可分别通过体内的μ、δ阿片受体和κ受体介导镇痛[36],而低频电针的镇痛效果较高频更为显著[37-39],说明μ、δ系统可能在镇痛中发挥更大的作用。最新研究表明,电针通过上调脊髓IL-10/β-内啡肽通路缓解SNL神经病理痛[34]。在疱疹后遗神经病理痛模型中发现低频电针可通过激活μ阿片受体,降低脊髓轴突导向因子-1(Netrin-1)及其受体结肠癌缺失蛋白(deleted in colorectal cancer,DCC)的表达,进而形成抑制传入神经出芽的脊髓环境,减轻触诱发痛[40]。
抑制脊髓水平痛相关信号通路 在神经病理痛的发展过程中,已知一些脊髓水平的信号通路如c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)/c-Jun、细胞外调节蛋白激酶1/2(extracellular regulated protein kinases 1/2,ERK1/2)、环磷酸腺苷(cyclic adenosine monophosphate,cAMP)/蛋白激酶A(protein kinase A,PKA)/环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)、L-精氨酸(L-arginine,L-Arg)/一氧化氮(nitric oxide,NO)/环磷酸鸟苷(cyclic guanosine monophosphate,cGMP)通路显著激活,这些通路被证实参与病理状态下痛觉敏化的形成[41-44]。而大量研究[43-46]表明,电针可以通过对脊髓痛相关分子通路的调节起到镇痛作用。在吗啡引发神经病理痛的模型中,电针激活脊髓大麻素Ⅰ型受体(cannabinoid-type 1 receptor,CB1),进而抑制下游ERK1/2通路[47]。电针能降低CCI大鼠脊髓ERK1/2和P2X3R的蛋白水平,而特异性阻断ERK1/2也可导致P2X3R的下调,提示电针可能通过调节ERK1/2通路降低P2X3受体表达,从而影响痛信号的传递[48]。
对痛相关脑区及脑环路的调节 对电针镇痛的早期研究集中于探索外周和脊髓机制,而近些年有更多研究关注电针对于病理痛状态下感觉、情绪与认知相关脑区及脑环路的影响。Ma等[49]通过建立臂丛神经损伤模型(brachial plexus avulsion injury,BPAI),利用fMRI成像建立全脑连接模型,根据以往fMRI数据选定躯体感觉皮层S1、下丘脑、杏仁核及其间的双向投射为关注区域(region of interest,ROI),经比较分析发现,长期电针使下丘脑和杏仁核向S1的有效投射减弱,从而一定程度阻断了皮层-边缘系统间双向投射介导的痛信号放大和维持。
另一在BPAI模型中的研究[50]运用PET/CT成像,以18F-氟代脱氧葡萄糖(18F-fluorodeoxyglucose,18F-FDG)显示脑区代谢活性,在电针4周后检测显示,对侧感觉及运动皮层,双侧中脑导水管周围灰质(periaqueductal gray,PAG)、对侧扣带回及岛叶(与痛相关),对侧眶额叶皮层和同侧的腹侧海马(与情绪、认知相关)均表现出活性改变。
对CCI后PAG和海马脑区兴奋/抑制性递质系统的研究发现,给予电针后PAG和海马的γ-氨基丁酸(γ-aminobutyric acid,GABA)受体表达增加,同时海马中兴奋性递质谷氨酸下调,而PAG中抑制性递质GABA下调[51]。另有研究显示,电针通过作用于腹外侧PAG(ventrolateral periaqueductal gray,vlPAG)中谷氨酸能及GABA能神经元上的CB1受体,促进vlPAG脑区的激活以加强对痛觉的下行抑制[52]。这些结果提示电针对痛感觉与情绪、认知高级中枢的调节是介导电针镇痛的一个重要机制,值得更深入的研究。
结语 电针可通过对神经病理痛形成和发展中涉及的各个环节实现整体调控,包括外周传入神经、脊髓、脑和免疫系统等等,多种机制形成复杂的网络并相互影响。在各个层面,电针主要通过调动人体内源的修复、抑制性机制(包括抗氧化机制、抑炎细胞因子、GABA能抑制性系统、PAG等下行抑制相关脑区),并同时抑制病理状态下产生的过度激活(兴奋性离子通道、促炎因子、胶质细胞激活、兴奋性信号通路及痛相关脑区的激活),通过对机体系统“正”“负”平衡的调节起到治疗神经病理痛的效果。
随着对电针镇痛的分子、细胞及环路机制的探索不断加深,将为针刺治疗神经病理痛的临床推广提供更加完善的理论基础。而对电针镇痛靶点的理解,为电针与其他治疗手段的协同应用提供了支持。
作者贡献声明 孙嘉璐 论文构思与设计,文献调研与整理,论文撰写。吕宁 论文构思与设计,论文修改和定稿。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
SCHOLZ J, FINNERUP NB, ATTAL N, et al. The IASP classification of chronic pain for ICD-11:chronic neuropathic pain[J]. Pain, 2019, 160(1): 53-59.
[DOI]
|
[2] |
FINNERUP NB, ATTAL N, HAROUTOUNIAN S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis[J]. Lancet Neurol, 2015, 14(2): 162-173.
[DOI]
|
[3] |
COHEN SP, MAO JR. Neuropathic pain: mechanisms and their clinical implications[J]. BMJ, 2014, 348: f7656..
[DOI]
|
[4] |
JENSEN TS, FINNERUP NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms[J]. Lancet Neurol, 2014, 13(9): 924-935.
[DOI]
|
[5] |
KREMER M, SALVAT E, MULLER A, et al. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights[J]. Neuroscience, 2016, 338: 183-206.
[DOI]
|
[6] |
RADAT F, MARGOT-DUCLOT A, ATTAL N. Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: a multicentre cohort study[J]. Eur J Pain, 2013, 17(10): 1547-1557.
[URI]
|
[7] |
YALCIN I, BARTHAS F, BARROT M. Emotional consequences of neuropathic pain: insight from preclinical studies[J]. Neurosci Biobehav Rev, 2014, 47: 154-164.
[DOI]
|
[8] |
黄华, 陈慧娥, 余文英, 等. 电针"夹脊"穴对坐骨神经慢性损伤大鼠镇痛后效应的影响[J]. 针刺研究, 2020, 45(1): 40-45. [CNKI]
|
[9] |
ZHENG YY, ZHOU Y, WU QY, et al. Effect of electroacupuncture on the expression of P2X4, GABAAγ2 and long-term potentiation in spinal cord of rats with neuropathic pain[J]. Brain Res Bull, 2020, 162: 1-10.
[DOI]
|
[10] |
WAN J, NAN S, LIU JJ, et al. Synaptotagmin 1 is involved in neuropathic pain and electroacupuncture-mediated analgesic effect[J]. Int J Mol Sci, 2020, 21(3): 968.
[DOI]
|
[11] |
YANG LY, DING WH, YOU ZR, et al. Alleviation of trigeminal neuropathic pain by electroacupuncture: the role of hyperpolarization-activated cyclic nucleotide-gated channel protein expression in the Gasserian ganglion[J]. Acupunct Med, 2019, 37(3): 192-198.
[DOI]
|
[12] |
PAN H, HUANG HP, ZHANG LY, et al. "Adjusting internal organs and dredging channel" electroacupuncture treatment prevents the development of diabetic peripheral neuropathy by downregulating glucose-related protein 78(GRP78) and caspase-12 in streptozotocin-diabetic rats[J]. J Diabetes, 2019, 11(12): 928-937.
[DOI]
|
[13] |
ZHAO XM, LIU L, WANG YK, et al. Electroacupuncture enhances antioxidative signal pathway and attenuates neuropathic pain induced by chemotherapeutic paclitaxel[J]. Physiol Res, 2019, 68(3): 501-510.
[PubMed]
|
[14] |
Li YY, YIN CY, Li XJ, et al. Electroacupuncture alleviates paclitaxel-induced peripheral neuropathic pain in rats via suppressing TLR4 signaling and TRPV1 upregulation in sensory neurons[J]. Int J Mol Sci, 2019, 20(23): 5917.
[DOI]
|
[15] |
JIANG YL, YIN XH, SHEN YF, et al. Low frequency electroacupuncture alleviated spinal nerve ligation induced mechanical allodynia by inhibiting TRPV1 upregulation in ipsilateral undamaged dorsal root ganglia in rats[J]. Evid Based Complement Alternat Med, 2013, 2013: 170910.
|
[16] |
WANG Y, XUE M, XIA YY, et al. Electroacupuncture treatment upregulates α7nAChR and inhibits JAK2/STAT3 in dorsal root ganglion of rat with spared nerve injury[J]. J Pain Res, 2019, 12: 1947-1955.
[DOI]
|
[17] |
TU WZ, WANG WS, XI HY, et al. Regulation of neurotrophin-3 and interleukin-1β and inhibition of spinal glial activation contribute to the analgesic effect of electroacupuncture in chronic neuropathic pain states of rats[J]. Evid Based Complement Alternat Med, 2015, 2015: 642081.
[PubMed]
|
[18] |
CHA MH, NAM TS, KWAK Y, et al. Changes in cytokine expression after electroacupuncture in neuropathic rats[J]. Evid Based Complement Alternat Med, 2012, 2012: 792765.
[URI]
|
[19] |
LIANG Y, GU YP, SHI RY, et al. Electroacupuncture downregulates P2X3 receptor expression in dorsal root ganglia of the spinal nerve-ligated rat[J]. Mol Pain, 2019, 15: 1-10.
[PubMed]
|
[20] |
ZHOU YF, YING XM, HE XF, et al. Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy[J]. Purinergic Signal, 2018, 14(4): 359-369.
[DOI]
|
[21] |
ZHAO YX, YAO MJ, LIU Q, et al. Electroacupuncture treatment attenuates paclitaxel-induced neuropathic pain in rats via inhibiting spinal glia and the TLR4/NF-κB pathway[J]. J Pain Res, 2020, 13: 239-250.
[DOI]
|
[22] |
WANG Y, JIANG Q, XIA YY, et al. Involvement of α7nAChR in electroacupuncture relieving neuropathic pain in the spinal cord of rat with spared nerve injury[J]. Brain Res Bull, 2018, 137: 257-264.
[DOI]
|
[23] |
LIANG Y, QIU YJ, DU JY, et al. Inhibition of spinal microglia and astrocytes contributes to the anti-allodynic effect of electroacupuncture in neuropathic pain induced by spinal nerve ligation[J]. Acupunct Med, 2016, 34(1): 40-47.
[DOI]
|
[24] |
LIANG Y, DU JY, QIU YJ, et al. Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase[J]. Chin J Integr Med, 2016, 22(9): 704-713.
[DOI]
|
[25] |
WANG JY, GAO YH, QIAO LN, et al. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats[J]. BMC Complement Altern Med, 2018, 18(1): 74.
[DOI]
|
[26] |
TU WZ, LI SS, JIANG X, et al. Effect of electro-acupuncture on the BDNF-TrkB pathway in the spinal cord of CCI rats[J]. Int J Mol Med, 2018, 41(6): 3307-3315.
[PubMed]
|
[27] |
WANG Y, XUE M, XIA YY, et al. Electroacupuncture treatment suppresses transcription factor IRF8 in spinal cord of rats with spared nerve injury[J]. Pain Res Manag, 2020, 2020: 1854363.
[URI]
|
[28] |
XIA YY, XUE M, WANG Y, et al. Electroacupuncture alleviates spared nerve injury-induced neuropathic pain and modulates HMGB1/NF-κB signaling pathway in the spinal cord[J]. J Pain Res, 2019, 12: 2851-2863.
[DOI]
|
[29] |
AGALAVE NM, LARSSON M, ABDELMOATY S, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis[J]. Pain, 2014, 155(9): 1802-1813.
[DOI]
|
[30] |
NAKAMURA Y, MORIOKA N, ABE H, et al. Neuropathic pain in rats with a partial sciatic nerve ligation is alleviated by intravenous injection of monoclonal antibody to high mobility group box-1[J]. PLoS One, 2013, 8(8): e73640.
[DOI]
|
[31] |
ZHANG MX, DAI QX, LIANG DD, et al. Involvement of adenosine A1 receptor in electroacupuncture-mediated inhibition of astrocyte activation during neuropathic pain[J]. Arq Neuropsiquiatr, 2018, 76(11): 736-742.
[DOI]
|
[32] |
孙涛, 崔承斌, 罗建刚, 等. 电针对神经病理性疼痛大鼠脊髓胶质纤维酸性蛋白活性及肿瘤坏死因子-α和白介素-1β表达的影响[J]. 针刺研究, 2010, 35(1): 12-16. [CNKI]
|
[33] |
XU J, CHEN XM, ZHENG BJ, et al. Electroacupuncture relieves nerve injury-induced pain hypersensitivity via the inhibition of spinal P2X7 receptor-positive microglia[J]. Anesth Analg, 2016, 122(3): 882-892.
[DOI]
|
[34] |
ALI U, APRYANI E, WU HY, et al. Low frequency electroacupuncture alleviates neuropathic pain by activation of spinal microglial IL-10/β-endorphin pathway[J]. Biomed Pharmacother, 2020, 125: 109898.
[DOI]
|
[35] |
DAI WJ, SUN JL, LI C, et al. Involvement of interleukin-10 in analgesia of electroacupuncture on incision pain[J]. Evid Based Complement Alternat Med, 2019, 2019: 8413576.
[PubMed]
|
[36] |
CHEN XH, HAN JS. Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: another cross-tolerance study[J]. Behav Brain Res, 1992, 47(2): 143-149.
[DOI]
|
[37] |
KIM JH, MIN BI, NA HS, et al. Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors[J]. Brain Res, 2004, 998(2): 230-236.
[DOI]
|
[38] |
MENG XZ, ZHANG Y, LI AH, et al. The effects of opioid receptor antagonists on electroacupuncture-produced anti-allodynia/hyperalgesia in rats with paclitaxel-evoked peripheral neuropathy[J]. Brain Res, 2011, 1414: 58-65.
[DOI]
|
[39] |
孙瑞卿, 王贺春, 王韵, 等. 不同频率的电针对大鼠神经源性痛的治疗作用[J]. 中国应用生理学杂志, 2002, 18(2): 128-131. [DOI]
|
[40] |
LI HP, SU W, SHU Y, et al. Electroacupuncture decreases Netrin-1-induced myelinated afferent fiber sprouting and neuropathic pain through μ-opioid receptors[J]. J Pain Res, 2019, 12: 1259-1268.
[DOI]
|
[41] |
OBATA K, NOGUCHI K. MAPK activation in nociceptive neurons and pain hypersensitivity[J]. Life Sci, 2004, 74(21): 2643-2653.
[DOI]
|
[42] |
ZHUANG ZY, WEN YR, ZHANG DR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance[J]. J Neurosci, 2006, 26(13): 3551-3560.
[DOI]
|
[43] |
闫丽萍, 侯保权, 李守栋, 等. 电针对坐骨神经分支选择性损伤大鼠脊髓L-Arg/NO/cGMP通路的影响[J]. 针刺研究, 2019, 44(12): 893-897+905. [CNKI]
|
[44] |
闫丽萍, 钱长鑫, 马骋, 等. 电针对神经病理性痛大鼠脊髓环磷酸腺苷、蛋白激酶A以及环磷酸腺苷反应元件结合蛋白通路的影响[J]. 针刺研究, 2018, 43(12): 788-792. [CNKI]
|
[45] |
LEE JY, CHOI DC, OH TH, et al. Analgesic effect of acupuncture is mediated via inhibition of JNK activation in astrocytes after spinal cord injury[J]. PLoS One, 2013, 8(9): e73948.
[DOI]
|
[46] |
刘宪彤, 陶星, 马铁明, 等. 电针"环跳"穴不同组织对坐骨神经损伤大鼠脊髓JNK、c-jun磷酸化表达的影响[J]. 针刺研究, 2015, 40(5): 373-377. [CNKI]
|
[47] |
ZHENG YX, YU Y, XIE KL, et al. Electroacupuncture alleviates morphineinduced hyperalgesia by regulating spinal CB1 receptors and ERK1/2 activity[J]. Mol Med Rep, 2019, 20(2): 1113-1120.
[URI]
|
[48] |
YU JB, ZHAO C, LUO XQ. The effects of electroacupuncture on the extracellular signal-regulated kinase 1/2/P2X3 signal pathway in the spinal cord of rats with chronic constriction injury[J]. Anesth Analg, 2013, 116(1): 239-246.
[DOI]
|
[49] |
MA ZZ, LU YC, WU JJ, et al. Acupuncture induces reduction in limbic-cortical feedback of a neuralgia rat model: a dynamic causal modeling study[J]. Neural Plast, 2020, 2020: 5052840.
[URI]
|
[50] |
HUO BB, ZHENG MX, HUA XY, et al. Brain metabolism in rats with neuropathic pain induced by brachial plexus avulsion injury and treated via electroacupuncture[J]. J Pain Res, 2020, 13: 585-595.
[DOI]
|
[51] |
HUANG CP, LIN YW, LEE DY, et al. Electroacupuncture relieves CCI-induced neuropathic pain involving excitatory and inhibitory neurotransmitters[J]. Evid Based Complement Alternat Med, 2019, 2019: 6784735.
[PubMed]
|
[52] |
ZHU H, XIANG HC, LI HP, et al. Inhibition of GABAergic neurons and excitation of glutamatergic neurons in the ventrolateral periaqueductal gray participate in electroacupuncture analgesia mediated by cannabinoid receptor[J]. Front Neurosci, 2019, 13: 484.
[DOI]
|