急性肺损伤(acute lung injury,ALI)是一类由多种因素诱发的高发病率、高死亡率的临床疾病,除了创伤、病原微生物等对肺泡结构的直接破坏,炎症反应失调也是ALI的重要原因,过度炎症反应最终导致肺泡毛细血管膜弥漫性损伤和高通透性肺水肿。众多内源性修复机制受到抑制,肺泡液清除受损,导致ALI不断进展和急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)的发生。目前,对于ALI/ARDS缺乏能够早期高效识别高危患者的方法及特效治疗手段,因此,对于ALI/ARDS的病理生理机制需要更全面深入的研究以提高临床诊疗效果。程序性坏死也称为坏死性凋亡,是一种调节性细胞死亡方式,依赖专门的分子系统,包括死亡受体(death receptor,DR)、受体相互作用蛋白激酶1(receptor-interacting protein kinase 1,RIPK1)、RIPK3及混合谱系激酶结构域样蛋白(mixed-lineage kinase domain-like protein,MLKL)等。程序性坏死通常由病原体感染、缺血、缺氧等诱发,可导致肺泡上皮细胞、血管内皮细胞、巨噬细胞等多种细胞死亡并释放炎症介质,影响炎症启动、放大和慢性化等各个阶段,在ALI/ARDS中发挥重要作用[1-2],对程序性坏死的研究综述有助于进一步理解ALI/ARDS的发病机制,有望为临床筛选高危患者及治疗重症者提供理论依据。
程序性坏死的机制 程序性坏死由肿瘤坏死因子受体1(tumor necrosis factor receptor 1,TNFR1)、Toll样受体4(Toll-like receptor 4,TLR4)和Z-DNA结合蛋白1(Z-DNA binding protein 1,ZBP1)等触发。各种类型的作用机制相似,本文以TNFR1为例介绍信号转导过程。TNFR1与其配体TNF-α结合后,其胞内死亡折叠基序暴露,募集RIPK1等下游分子,形成由TNFR1相关死亡结构域蛋白(TNFR1-associated death domain protein,TRADD)、RIPK1和线性泛素链组装复合物(linear ubiquitin chain assembly complex,LUBAC)等组成的复合体,并进一步形成由RIPK1、RIPK3和MLKL组成的坏死小体。RIPK3由RIPK1激活,二者通过RIP同型基序相互作用催化一系列复杂的磷酸化反应,其中RIPK3催化MLKL磷酸化形成MLKL多聚体(三聚体或四聚体)。MLKL为程序性坏死的执行者,其多聚体通过与磷脂酰肌醇磷酸酯结合,导致细胞膜破裂,通透性增加,离子内流,细胞内渗透压升高,进而发生细胞死亡,细胞内容物释放,引发免疫和炎症反应[3-4]。
RIPK1/RIPK3/MLKL是程序性坏死经典信号转导途径。RIPK1、RIPK3参与细胞凋亡,RIPK3还可在MLKL不参与的情况下调节促炎因子的基因转录、激活炎性小体[5]。程序性坏死与其他程序性死亡可能存在交互作用,一般情况下当细胞凋亡途径受到抑制,细胞更容易进入程序性坏死途径[6]。RIPK1抑制剂如Nec-1(necrostatin-1)、MLKL抑制剂如NSA(necrosulfonamide)或RIPK3基因敲除皆可阻断程序性坏死,减轻炎症反应和机体损伤。
ALI/ARDS的诱因 ALI/ARDS的诱发因素包括严重感染、输血、肺移植、机械通气、脂肪栓塞等。肺炎相关ALI/ARDS最常见,金黄色葡萄球菌毒素如α-溶血素(Hla)、革兰氏阴性杆菌外膜的重要免疫原性成分脂多糖(lipopolysaccharide,LPS)等能激活细胞程序性坏死,加剧肺损伤。脓毒症情况下全身炎症反应易诱发肺损伤。红细胞输注后释放的成分通过诱导程序性坏死及释放危险信号,增加肺部炎症的易感性[7]。肺移植时供体肺缺血、缺氧或缺血后再灌注引起肺血管内皮或肺泡上皮细胞损伤;其他器官移植主要通过相关的缺血再灌注损伤释放的炎症介质激活程序性坏死[8]。程序性坏死通过抑制脂肪酸氧化参与呼吸机相关肺损伤(ventilator-induced lung injury,VILI)[9]。脂肪栓塞会造成肺血管内皮、肺泡上皮细胞程序性坏死而诱发ALI/ARDS[10]。高氧暴露可能主要通过氧化应激启动细胞的程序性坏死,进而诱发ALI/ARDS[11]。
ALI/ARDS的细胞改变 ALI/ARDS发病过程中细胞会出现多种类型死亡,程序性坏死是其中之一,所占的比例主要取决于相关受体的表达情况及细胞内环境。肺泡上皮细胞、血管内皮细胞的程序性坏死直接或间接导致肺泡上皮-内皮屏障受损而发生肺水肿,并且促进大量炎症介质释放诱导炎症反应。巨噬细胞,尤其是肺泡巨噬细胞,通过免疫应答及调节促炎介质和抑炎介质的平衡在ALI发生、转归中发挥重要作用。肺泡巨噬细胞的程序性坏死会打破该平衡而加剧炎症反应。
肺泡上皮细胞 肺泡弥漫性损伤是ALI/ARDS基本病理改变,肺泡上皮细胞死亡是关键。通过对LPS诱导的肺损伤动物模型中各种细胞死亡标记物的比较,发现程序性坏死是肺泡上皮细胞主要死亡形式之一[12]。肺泡上皮细胞中RIPK1、RIPK3及MLKL均高表达。在金黄色葡萄球菌诱导的肺损伤动物模型中发现,炎症早期出现Ⅱ型肺泡上皮细胞程序性坏死[13]。TNF-α和ZBP1均可触发肺泡上皮细胞程序性坏死[14-16]。LPS可能通过中性粒细胞诱发肺泡上皮细胞程序性坏死[12]。体外实验显示,LPS刺激肺泡上皮细胞并未造成细胞死亡,而LPS+中性粒细胞处理肺泡上皮细胞后出现细胞死亡,可检测到程序性坏死。肾移植引发的肺损伤与骨桥蛋白相关[17]。发生程序性坏死的上皮细胞产生和分泌的骨桥蛋白增加,内质网应激增加。骨桥蛋白是一种促炎因子,可以促进B淋巴细胞增值及产生免疫球蛋白,因此上皮细胞程序性坏死间接促进炎症反应。
血管内皮细胞 向小鼠气管内滴注高浓度LPS建立ALI模型,通过投射电镜观察到肺血管内皮细胞线粒体肿胀,核染色质未呈现显著形态学改变。血管内皮细胞中TRADD、RIPK1、RIPK3、MLKL等表达显著增加。RIPK3高表达使血管内皮钙黏蛋白、玻黏蛋白、闭锁连接蛋白-1等表达增加,RIPK3高表达与血管内皮钙黏蛋白分解及肌动蛋白细胞骨架重塑紧密相关,程序性坏死导致血管内皮屏障的完整性受损、通透性增加[18]。RIPK3高表达还与凝血、内皮细胞迁移和分化、血管生成等相关,热休克蛋白90(heat shock protein 90,HSP90)能够正向调控血管内皮细胞程序性坏死。红细胞刺激内皮细胞上清液后,RIPK3、高迁移率族蛋白B1(high mobility group box 1 protein,HMGB1)浓度显著升高,RIPK1和RIPK3相互作用增加。Nec-1预处理后,上述变化明显减弱,提示红细胞输注诱发的肺血管内皮细胞发生程序性坏死可能与HMGB1有关[7]。
肺泡巨噬细胞 LPS通过激活ZBP1介导肺泡巨噬细胞程序性坏死,放大炎症信号诱导肺损伤[19-20]。高浓度LPS导致肺泡巨噬细胞数量显著降低。在肺泡巨噬细胞中敲除ZBP1可以减轻肺损伤,肺泡灌洗液、血浆及肺泡巨噬细胞培养液中IL-1β、IL-6和TNF-α浓度降低,肺泡巨噬细胞中RIPK1、RIPK3和MLKL表达显著下降,mtDNA/TLR4/NF-κB信号通路下调,线粒体DNA激活的NF-κB通路可使促炎因子、促炎细胞等高表达而加剧炎症反应。Hla也会诱导肺泡巨噬细胞发生程序性坏死,加剧肺组织炎症反应[21]。胰岛素样生长因子1(insulin-like growth factor 1,IGF-1)、c-Jun氨基端激酶(c-Jun N-terminal kinases,JNK)能够正向调控肺泡巨噬细胞的程序性坏死而加剧肺损伤[22-23]。
ALI/ARDS的肺组织改变 ALI小鼠出现肺结构破坏和肺水肿、肺活量降低、肺顺应性降低。各类病因所致ALI肺组织中均发现表达RIPK1和RIPK3的细胞数量急剧增加,RIPK1、RIPK3、磷酸化RIPK3、MLKL和磷酸化MLKL浓度显著升高,RIPK1和RIPK3的相互作用增强。Nec-1、NSA、RIPK3-/-等干预措施下调RIPK1、RIPK3、MLKL信号分子的表达,肺部炎症和损伤明显减轻[10, 16, 21, 24-27]。在H7N9流感病毒所致ARDS患者中,死亡患者肺组织RIPK1、RIPK3、磷酸化RIPK3、MLKL和磷酸化MLKL表达显著升高,提示H7N9触发了肺组织的程序性坏死[28]。
ALI/ARDS的肺泡灌洗液、血浆改变 ALI动物模型的肺泡灌洗液中细胞总数增加、中性粒细胞数量增加,巨噬细胞数量减少,总蛋白质浓度增加,肺泡上皮细胞损伤标志物浓度增加,IL-1α、IL-1β、IL-6等炎症相关信号分子浓度增加,MLKL浓度增加,值得注意的是ARDS患者肺泡灌洗液中的外泌体中也发现RIPK3浓度增加[29]。经过Nec-1、NSA、RIPK3-/-等干预措施后,上述变化明显减弱[10, 16, 21, 24-27]。
一项队列研究显示,脓毒症患者血浆RIPK3从出现到48 h后的变化量与ARDS的发生独立相关[30]。在发病前6天发生ARDS的患者血浆RIPK3浓度增量显著大于未出现ARDS的患者;血浆RIPK3的变化量也与30天死亡率正相关。在重症脓毒症患者中,血浆RIPK3浓度与RBC输注相关[7]。输血前,未输血组和输血组患者血浆RIPK3浓度无差异;输血第2天,输血组患者血浆RIPK3浓度升高。其可能机制是输注的红细胞诱导人内皮细胞程序性坏死并释放HMGB1,HMGB1是一种重要的炎症介质,在脓毒症炎症反应中发挥重要作用。对LPS诱导的脓毒症动物研究显示趋化因子受体CXCR1/2可能正向调控程序性坏死,其受体拮抗剂可通过抑制程序性坏死而减轻肺损伤[31]。
Siempos等[9]的研究显示RIPK3可能通过非依赖RIPK1、MLKL途径抑制脂肪酸氧化介导VILI。与未使用机械通气(mechanical ventilation,MV)的患者相比,接受MV的患者血浆游离肉碱(C0)与棕榈酰肉碱(C16)、油基肉碱(C18)二者和的比值[C0/(C16+C18)]及RIPK3浓度更高,血浆RIPK3与C0/(C16+C18)正相关,两组血浆RIPK1及MLKL浓度未见差异。使用MV的患者中,与非ARDS组相比,ARDS组血浆RIPK3及C0/(C16+C18)显著升高。C0/(C16+C18)升高反映肉毒碱棕榈酰转移酶(carnitine palmitoyl transferase,CPT1)缺乏。CPT1是一种脂肪酸β-氧化限速酶,CPT1抑制剂可导致VILI恶化。VILI的小鼠肺组织长链脂肪酸(如棕榈酸和亚油酸)浓度升高、肺泡灌洗液游离脂肪酸浓度升高;RIPK3-/-小鼠的上述变化明显改善,但Nec-1干预、RIPK1+/-及MLKL-/-未出现类似结果。因此,程序性坏死经典信号途径RIPK1/RIPK3/MLKL可能未参与VILI病理过程,但RIPK3仍发挥重要作用,这提示RIPK3可能在RIPK1、MLKL不参与的情况下介导某种炎症信号通路,此信号通路通过抑制脂肪酸氧化,进而影响机体能量代谢使得肺损伤恶化。
结语 程序性坏死导致肺泡上皮细胞、血管内皮细胞、肺泡巨噬细胞等多种细胞损伤,参与各种因素诱发的ALI/ARDS,信号转导途径的核心为RIPK1/RIPK3/MLKL,不同诱因下的程序性坏死调控机制略有差异,ALI/ARDS患者血浆RIPK3与疾病严重程度正相关,程序性坏死阻断剂可发挥保护效应。目前大多数研究关注ALI/ARDS的早期阶段,少有研究探索程序性坏死对中后期阶段的影响,如肺泡毛细血管屏障修复、纤维化及预后等。程序性坏死的详细分子机制,如程序性坏死与其他细胞活动的交互作用、经典分子通路的上下游调控机制等,也有待深入研究。
作者贡献声明 王亚丽 文献调研,论文构思和撰写。朱蕾 论文校审和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
MATTHAY MA, ZEMANS RL, ZIMMERMAN GA, et al. Acute respiratory distress syndrome[J]. Nat Rev Dis Primers, 2019, 5(1): 18.
[DOI]
|
[2] |
GROOTJANS S, VANDEN BERGHE T, VANDENA-BEELE P. Initiation and execution mechanisms of necroptosis: an overview[J]. Cell Death Differ, 2017, 24(7): 1184-1195.
[DOI]
|
[3] |
GALLUZZI L, VITALE I, AARONSON SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541.
[DOI]
|
[4] |
SHAN B, PAN H. Necroptosis in development and diseases[J]. Genes Dev, 2018, 32(5-6): 327-340.
[DOI]
|
[5] |
CHEN J, WANG S, FU R, et al. RIP3 dependent NLRP3 inflammasome activation is implicated in acute lung injury in mice[J]. J Transl Med, 2018, 16(1): 233.
[DOI]
|
[6] |
TONNUS W, MEYER C, PALIEGE A, et al. The pathological features of regulated necrosis[J]. J Pathol, 2019, 247(5): 697-707.
[DOI]
|
[7] |
QING DY, CONEGLIANO D, SHASHATY MG, et al. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation[J]. Am J Respir Crit Care Med, 2014, 190(11): 1243-1254.
[DOI]
|
[8] |
FERRARI RS, ANDRADE CF. Oxidative stress and lung ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2015, 2015: 590987.
[PubMed]
|
[9] |
SIEMPOS II, MA KC, IMAMURA M, et al. RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury[J]. JCI Insight, 2018, 3(9): e97102.
[DOI]
|
[10] |
PAN L, YAO DC, YU YZ, et al. Necrostatin-1 protects against oleic acid-induced acute respiratory distress syndrome in rats[J]. Biochem Biophys Res Commun, 2016, 478(4): 1602-1608.
[DOI]
|
[11] |
HAN CH, GUAN Z, ZHANG PX, et al. Oxidative stress induced necroptosis activation is involved in the pathogenesis of hyperoxic acute lung injury[J]. Biochem Biophys Res Commun, 2018, 495(3): 2178-2183.
[DOI]
|
[12] |
TAMADA N, TOJO K, YAZAWA T, et al. Necrosis rather than apoptosis is the dominant form of alveolar epithelial cell death in lipopolysaccharide-induced experimental acute respiratory distress syndrome model[J]. Shock, 2019, 54(1): 128-139.
[URI]
|
[13] |
SULIMAN HB, KRAFT B, BARTZ R, et al. Mitochondrial quality control in alveolar epithelial cells damaged by S.aureus pneumonia in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(4): L699-L709.
[DOI]
|
[14] |
WEN SH, LIN LN, WU HJ, et al. TNF-α increases Staphylococcus aureus-induced death of human alveolar epithelial cell line A549 associated with RIP3-mediated necroptosis[J]. Life Sci, 2018, 195: 81-86.
[DOI]
|
[15] |
WANG Y, HAO Q, FLORENCE JM, et al. Influenza virus infection induces ZBP1 expression and necroptosis in mouse lungs[J]. Front Cell Infect Microbiol, 2019, 9: 286.
[DOI]
|
[16] |
ZHAO H, NING J, LEMAIRE A, et al. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats[J]. Kidney Int, 2015, 87(4): 738-748.
[DOI]
|
[17] |
ZHAO H, CHEN Q, HUANG H, et al. Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats[J]. Br J Anaesth, 2019, 123(4): 519-530.
[DOI]
|
[18] |
YU X, MAO M, LIU X, et al. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome[J]. J Mol Med (Berl), 2020, 98(4): 569-583.
[DOI]
|
[19] |
DU XK, GE WY, JING R, et al. Necroptosis in pulmonary macrophages mediates lipopolysaccharide-induced lung inflammatory injury by activating ZBP-1[J]. Int Immuno-pharmacol, 2019, 77: 105944.
[DOI]
|
[20] |
CHEN H, LI Y, WU J, et al. RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis[J]. Cell Death Differ, 2020, 27(9): 2568-2585.
[DOI]
|
[21] |
KITUR K, PARKER D, NIETO P, et al. Toxin-induced necroptosis is a major mechanism of Staphylococcus aureus lung damage[J]. PLoS Pathog, 2015, 11(4): e1004820.
[DOI]
|
[22] |
LEE SH, SHIN JH, SONG JH, et al. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice[J]. Biochem Biophys Res Commun, 2018, 498(4): 877-883.
[DOI]
|
[23] |
CAO M, CHEN F, XIE N, et al. c-Jun N-terminal kinases differentially regulate TNF-and TLRs-mediated necroptosis through their kinase-dependent and -independent activities[J]. Cell Death Dis, 2018, 9(12): 1140.
[DOI]
|
[24] |
WANG L, WANG T, LI H, et al. Receptor interacting protein 3-mediated necroptosis promotes lipopolysaccharide-induced inflammation and acute respiratory distress syndrome in mice[J]. PLoS One, 2016, 11(5): e0155723.
[DOI]
|
[25] |
HAN CH, GUAN ZB, ZHANG PX, et al. Oxidative stress induced necroptosis activation is involved in the pathogenesis of hyperoxic acute lung injury[J]. Biochem Biophys Res Commun, 2018, 495(3): 2178-2183.
[DOI]
|
[26] |
KANOU T, OHSUMI A, KIM H, et al. Inhibition of regulated necrosis attenuates receptor-interacting protein kinase 1-mediated ischemia-reperfusion injury after lung transplantation[J]. J Heart Lung Transplant, 2018, 37(10): 1261-1270.
[DOI]
|
[27] |
WANG XG, O'Brien EM, YU J, et al. Prolonged cold ischemia induces necroptotic cell death in ischemia-reperfusion injury and contributes to primary Graft dysfunction after lung transplantation[J]. Am J Respir Cell Mol Biol, 2019, 61(2): 244-256.
[DOI]
|
[28] |
QIN C, SAI XY, QIAN XF, et al. Close relationship between cIAP2 and human ARDS induced by severe H7N9 infection[J]. Biomed Res Int, 2019, 2019: 2121357.
[PubMed]
|
[29] |
KIM TH, HONG SB, LIM CM, et al. The role of exosomes in bronchoalveloar lavage from patients with acute respiratory distress syndrome[J]. J Clin Med, 2019, 8(8): 1148.
[DOI]
|
[30] |
SHASHATY MGS, REILLY JP, FAUST HE, et al. Plasma receptor interacting protein kinase-3 levels are associated with acute respiratory distress syndrome in sepsis and trauma: a cohort study[J]. Crit Care, 2019, 23(1): 235.
[DOI]
|
[31] |
WANG M, ZHONG D, DONG P, et al. Blocking CXCR1/2 contributes to amelioration of lipopolysaccharide-induced sepsis by downregulating substance P[J]. J Cell Biochem, 2018, 120(2): 2007-2014.
[PubMed]
|