2. 上海市影像医学研究所 上海 200032
2. Shanghai Institute of Medical Imaging, Shanghai 200032, China
CT冠状动脉成像(coronary CT angiography,CCTA)因其无创性,且具有较高的敏感性和阴性预测值,已成为临床筛查和诊断冠心病(coronary artery disease,CAD)最主要的检查手段[1-3]。但常规CCTA主要提供冠脉狭窄的解剖学信息,难以提供冠脉狭窄的功能学信息[4-5]。因此,指南建议对于CCTA诊断具有明显狭窄的CAD患者须进一步行功能学检查,以提高行有创性冠脉造影的临床适宜性[6-7]。
最近,一种基于工作站的CT-冠状动脉血流储备分数(fractional flow reserve,FFR)采用降维数学模型,利用常规CCTA数据即可在线即时计算出冠脉血流的流量和压力,因其无需多余的造影剂和辐射暴露,为无创性评估冠脉狭窄的血流动力学意义提供了理想的方法[8-9]。国外已有文献研究报道[10-11],与常规CCTA相比,对于诊断冠脉狭窄的功能学改变,该基于工作站的CT-FFR显示出了良好的诊断性能;但是国内目前还鲜有报道基于工作站的血流动力学模拟的CT-FFR临床诊断性能研究。
FFR尽管被认为是评估冠脉狭窄功能学改变的“金标准”,因其有创性及花费昂贵等,仍然限制其在临床的广泛应用和推广。负荷核素心肌灌注显像(single photon emission computed tomography/myocardial perfusion imaging,SPECT/MPI)、心脏MR等无创的功能学检查仍然是评估CAD患者血流动力学改变的标准检查方法。SPECT/MPI对于评估多支冠脉病变心肌缺血时,因病变血管引起的心肌“平衡性缺血”,常导致假阴性结果;相反,SPECT/MPI对于单支冠脉病变的CAD患者具有较高的特异性。因此,本研究以SPECT/MPI为标准,拟探讨基于工作站的CT-FFR对于评估单支冠脉病变患者冠脉狭窄功能学改变的临床诊断准确性。
资料和方法临床资料 前瞻性收集并分析复旦大学附属中山医院2018年10月至2019年12月有冠心病史或临床疑似CAD、行CCTA检查的患者。纳入标准:(1)CCTA评估为单支冠脉病变患者;(2)狭窄处管腔参考直径 > 2 mm;(3)可视化评估管腔直径狭窄位于40%~90%。排除标准:(1)冠脉血管再通治疗病史者(如已行介入治疗或冠脉搭桥者);(2)口服倍他乐克后心率 > 60次/min;(3)年龄 < 40岁;(4)肥胖体质(BMI≥40 kg/m2);(5)房颤;(6)肾功能不全(肾小球滤过率 < 45 mL/min);(7)CCTA图像质量不佳;(8)哺乳期或育龄期妇女;(9)对碘造影剂或三磷酸腺苷(adenosine triphosphate,ATP)过敏者。所有纳入本临床研究的患者在一个月之内完成CCTA、负荷SPECT/MPI及ICA检查。本研究得到复旦大学附属中山医院伦理委员会的批准(B2020-088R),所有患者自愿纳入本研究并签署知情同意书。
CT扫描 扫描设备为东芝第二代320层螺旋CT(AquilionONE VISION Edition;日本Toshiba Medical Systems公司),探测器宽度为160 mm,层厚0.5 mm,旋转周期为275 ms,电压120Kv,电流300~350 mA。检查前患者基础心率若 > 60次/min,嘱咐患者口服倍他洛克,使心率降到≤60次/min;扫描开始前给予所有患者舌下含服硝酸甘油。采用Agatston方法计算冠脉钙化积分[12]。增强扫描以4~5 mL/s经肘前静脉使用高压注射泵连续注入对比剂碘帕醇(370 mg I/mL)40~50 mL+30 mL生理盐水。采用触发扫描,以降主动脉为监测点,阈值设定为300 Hu。扫描范围自气管隆突水平至心脏膈面下2 cm。CCTA数据采集采用前瞻性心电门控编辑扫描模式,采集时间窗为心动周期R-R间期的70%~99%,以便后期重建70%、80%、90%及99%的冠脉容积数据行CT-FFR分析。CCTA扫描总的有效辐射剂量(effective dose,ED)计算公式:ED=DLP(剂量长度乘积)×0.014[13]。
CCTA分析 对于冠脉病变的狭窄评估,由两位经验丰富并从事心血管影像研究的放射科医师使用专用工作站(Vitrea Fx 6,Vital Images)独立解读CCTA数据。任何分歧由二人协商得出结果。基于18节段冠状动脉模型行冠脉狭窄程度评估[14]。直径 > 2 mm的冠状动脉节段采用目测可视化评估管腔直径狭窄百分比;对于存在单支冠脉多发节段病变时以狭窄最严重处为最终冠脉狭窄评估结果。冠状动脉直径狭窄≥50%时被认为是阻塞性CAD。
CT-FFR分析 CT-FFR分析采用标准台式计算机(Xeon E5-2620,6 core 2 processor)和专用软件(Canon Medical Systems Corp)以及专用CT-FFR软件完成。CT-FFR是基于结构和流体力学的计算模型[8-9],利用R-R间期中70%、80%、90%和99%的冠脉CT容积数据,通过分析冠脉形态、运动、管腔横断面积和容积获得。该算法的优点是使用标准台式计算机采用降阶模型进行一维建模,可以缩短处理时间,快速高效计算分析得出冠脉树各处CT-FFR值。CT-FFR软件分析操作由一位主治医师完成,并由另一位经验丰富并从事心血管影像研究的放射科医师对冠脉管腔轮廓和中心线的编辑进行审核,确保精确识别、分割冠脉血管。CT-FFR值为冠脉狭窄远端管腔直径2 mm处测得值。病变血管的CT-FFR值≤0.80被定义为血流动力学显著狭窄。
SPECT/MPI采集及分析 所有纳入本研究的患者均采用静息态-负荷态方案行心肌灌注显像扫描。检查设备为D-SPECT专用心脏扫描仪(以色列Spectrum Dynamics Medical公司)。所有患者行SPECT心肌灌注数据采集时,99mTc-MIBI作为示踪剂,负荷态及静息态心肌灌注时剂量分别为24和8 mCi;ATP作为负荷态血管扩张剂,以140 μg·kg-1·min-1持续注射5 min后行负荷态数据采集。SPECT图像采集采用前瞻性心电门控编辑扫描模式,采用低剂量高分辨率CT扫描行衰减校正。SPECT图像传输到核医学科核心实验室,图像分析由两位经验丰富的核医学科医师独立完成,意见不统一时二人协商得出结果。基于17心肌节段模型对心肌节段划分;利用心肌的短轴位和垂直长轴位,采用肉眼观察法对核素心肌灌注图像进行评估。采用5分法对每一心肌节段灌注结果评分:0分,心肌灌注正常;1分,核素摄取轻度减低;2分,摄取中度减低;3分,摄取重度减低;4分,未见核素摄取。根据每个心肌节段灌注评分计算负荷显像总积分(summed stress scores,SSS)、静息显像总积分(summed rest scores,SRS)及总积分差(summed difference scores,SDS),SDS≥2时认为存在缺血性心肌灌注缺损。
ICA采集及分析 由经验丰富的心脏介入医师完成ICA图像采集,图像被传输到独立冠脉影像核心实验室行冠脉狭窄分析。在对CCTA及SPECT/MPI不知情的情况下,使用标准软件(Syngo fastView,VX57I33;Siemens Healthineers)行冠脉分割,对于管腔直径 > 2 mm的冠脉节段采用定量方法评估管腔直径狭窄百分比,冠脉直径狭窄≥50%为阻塞性CAD。
统计学分析 采用STATA 15.1软件行统计学分析。连续变量以x±s表示,分类变量数量和百分比表示。以SPECT/MPI结果为标准,分别统计常规CCTA、CT-FFR及ICA诊断冠脉狭窄导致心肌缺血的灵敏度、特异度、阳性预测值、阴性预测值及准确度。描绘和计算ROC及AUC;采用DeLong等[15]的方法比较两种ROC曲线。P < 0.05为差异有统计学意义,95%CI用于统计分析结果的表达。
结果一般情况 本研究共纳入41例单支冠脉病变患者(41支病变血管),年龄45~78岁,平均64.6岁,男性29例,女性12例。其中糖尿病患者18例,高血压患者25例,高血脂患者21例,抽烟者19例。钙化积分范围为0~455,均值为137。行CCTA检查的总有效辐射剂量为(3.8±1.2)mSv。
CCTA诊断效能 以SPECT/MPI为诊断标准,采用CCTA诊断冠脉狭窄导致心肌缺血的ROC分析显示,CCTA的AUC为0.76(95%CI:0.60~0.88)(图 1)。CCTA诊断冠脉功能性狭窄的敏感度、特异度、阳性预测值、阴性预测值及准确性分别为100%、32.0%、48.5%、100%及58.5%(表 1)。
[%(95%CI)] | |||||||||||||||||||||||||||||
Method | Sensitivity | Specificity | Positive predictive value | Negative predictive value | Accuracy | ||||||||||||||||||||||||
CT-FFR | 87.5(69.3-100) | 96.0(87.7-100) | 93.3(79.0-100) | 92.3(81.3-100) | 92.7(84.4-100) | ||||||||||||||||||||||||
CCTA | 100(100-100) | 32.0(12.3-52.7) | 48.5(30.5-66.5) | 100(100-100) | 58.5(42.8-74.3) | ||||||||||||||||||||||||
ICA | 93.8(80.4-100) | 32.0(12.3-51.7) | 46.9(28.6-65.2) | 88.9(63.3-100) | 56.1(40.2-72.0) |
ICA诊断效能 采用ICA诊断冠脉狭窄导致心肌缺血的ROC分析显示,ICA的AUC为0.80(95%CI:0.64~0.91)(图 1)。ICA诊断冠脉功能性狭窄的敏感度、特异度、阳性预测值、阴性预测值及准确性分别为93.8%、32.0%、46.9%、88.9%及56.1%(表 1)。
CT-FFR诊断效能 对于诊断冠脉功能性狭窄,CT-FFR的诊断准确性为92.7%,特异度和阳性预测值显著高于CCTA(特异度:96.0% vs. 32.0%,P < 0.05;阳性预测值:93.3% vs. 48.5%,P < 0.05)和ICA(特异度:96.0% vs. 32.0%,P < 0.05;阳性预测值:93.3% vs. 46.9%,P < 0.05)(表 1)。CT-FFR的AUC为0.93(95%CI:0.81~0.99),显著高于CCTA及ICA(CT-FFR vs. CCTA,P < 0.05;CT-FFR vs. ICA,P < 0.05)(图 1)。图 2、图 3为3种检查方法评估冠脉狭窄导致缺血的病例展示。
讨论FFR已经成为临床评估冠脉狭窄血流动力学意义的金标准,特别是对于临界性狭窄病变的功能性评估具有重要的临床意义。基于FFR指导的冠心病患者的临床治疗决策选择不仅可以改善患者预后,还可以减少医疗费用支出及不必要的血运重建;但是该方法是有创性检查且临床花费高,难以在临床广泛推广应用。基于计算机流体动力学(computational fluid dynamics,CFD)的CT-FFR模型成为临床研究的热点,不同的CT-FFR模型利用常规CCTA影像数据,经计算机计算分析即可获得整个冠脉血管树的CT-FFR分布,因其无创性且无额外辐射及造影剂使用,成为评估冠脉病变功能改变的临床研究热点。近年来,基于佳能医疗后处理工作站的CT-FFR模型不仅可以准确评估冠脉狭窄的功能学改变,而且可以将分析时间缩短至半小时内,因此为临床基于现场分析得出结果即时选择治疗决策的常规开展应用带来可能[16]。
基于血流动力学分析的FFRCT因其优良诊断性能且将计算时间控制在1 h内,已通过FDA认可,成为临床评估冠脉病变功能学改变的常规无创检查方法;但是仍需要将CCTA影像数据远程传输至超级计算机进行分析,限制了其临床广泛应用。Fujimoto等[10]研究显示,以FFR为标准,无论是在患者水平还是在血管水平,该基于后处理工作站CT-FFR模型对于诊断冠脉狭窄导致心肌缺血的临床诊断准确性均优于CCTA。与既往研究结果类似,本研究以SPECT/MPI为标准,对于诊断单支冠脉病变导致心肌缺血的敏感度、特异度、阳性预测值、阴性预测值及准确度分别为87.5%、96.0%、93.3%、92.3%及92.7%;AUC值为0.93,明显优于CCTA及ICA(AUC值分别为0.76、0.80,P均 < 0.05)。在本研究中,与CCTA及ICA相比,CT-FFR主要提高对于冠脉狭窄功能学预测的特异度(96.0% vs. 32.0% vs. 32.0%)及阳性预测值(93.3% vs. 48.5% vs.46.9%),在未显著降低敏感度(87.5% vs. 100% vs.93.8%)及阴性预测值(92.3% vs.100% vs. 88.9%)的情况下,使对于冠脉狭窄导致心肌缺血功能学评估准确性显著提高。因此,与基于冠脉狭窄的解剖学评估相比,基于CCTA的功能学指标CT-FFR对于评估冠脉狭窄导致心肌缺血的功能学效能显著改善。冠脉重度钙化会影响CCTA对于冠脉管腔真实显影,降低冠状动脉狭窄评估的准确性[17]。Norgaard等[18]研究证实,对于具有重度冠脉钙化积分患者,与单纯的CCTA相比,FFRCT可以显著提高钙化冠脉血管功能学评估的准确性。本研究纳入患者的钙化积分范围为0~455,平均为137,因此基于本工作站的CT-FFR对于重度冠脉钙化患者的功能学评估仍需进一步研究。
对于冠脉病变的功能学评估,CT-FFR除了明显优于常规CCTA检查外,与其他无创的功能学检查相比,其仍具有优良的临床诊断性能。Yang等[19]研究报道,以FFR作为金标准,CT-FFR(AUC=0.893)对于缺血性冠脉病变的诊断准确性与CT心肌灌注(CT myocardial perfusion,CTP)(AUC=0.885)相当。Coenen等[20]研究也表明,与单独CCTA相比,CCTA联合CT-FFR(AUC=0.80)和动态CTP联合CCTA(AUC=0.85)的诊断准确性显著提高。同样,Pontone等[21]研究证实,与单独CCTA相比,FFRCT和负荷CTP是有效评估CAD患者功能性改变且临床性能相仿的两种检查手段。此外,van Assen等[22]研究证实,动态CTP对主要心脏不良事件的预后价值优于CCTA和CT-FFR,这促使我们在未来的临床试验中进一步研究基于工作站的CT-FFR技术对于CAD患者的临床预后评估是否优于CTP。
本临床研究支持使用心脏CT作为“一站式检查”来评估CAD患者的冠状动脉解剖和功能信息。采用该基于工作站的CT-FFR技术,可以显著降低病变冠脉血管的假阳性数量[CT-FFR(n=1)vs. CCTA(n=17)],提高冠脉狭窄导致心肌缺血评估的特异性[CT-FFR(96.0%)vs. CCTA(32.0%)]。因此,CT-FFR技术因无须使用额外血管扩张剂、造影剂及辐射暴露,在未来有可能取代其他无创的功能学检查,成为评估CAD患者功能学改变的常规检查手段。
本研究还存在一些限制和不足。首先,尽管本临床试验为前瞻性研究,但病例数较少,需进一步开展基于大样本的临床研究;另外,病例钙化积分偏少,对于明显钙化积分患者的临床应用价值还需进一步研究;再者,与其他成像方式(如MRI和有创性性FFR)相比,SPECT/MPI诊断冠脉狭窄导致心肌缺血的灵敏度有限,但是作为一种无创的功能学检查手段,其对于单支冠脉病变功能学评估的特异度更高。
综上所述,与CCTA相比,本研究显示基于工作站的CT-FFR技术对于评估冠脉狭窄的功能性改变具有较高的准确性,因此具有良好的应用前景,未来有望减少不必要的冠脉造影检查和血运重建术。
作者贡献声明 严诚 研究设计,数据采集、统计和分析,论文撰写。黄健峰 论文构思,数据搜集、采集和分析。张利军 论文构思,数据采集,技术支持,监督指导。过伟锋 数据统计和分析,论文撰写和修订,监督指导。曾蒙苏 试验设计指导,临床行政技术支持,论文审阅。陆秀良 实验设计指导,数据采集、统计和分析,论文修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
MEIJBOOM WB, MEIJS MF, SCHUIJF JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study[J]. J Am Coll Cardiol, 2008, 52(25): 2135-2144.
[DOI]
|
[2] |
MILLER JM, ROCHITTE CE, DEWEY M, et al. Diagnostic performance of coronary angiography by 64-row CT[J]. N Engl J Med, 2008, 359(22): 2324-2336.
[DOI]
|
[3] |
LITT HI, GATSONIS C, SNYDER B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes[J]. N Engl J Med, 2012, 366(15): 1393-1403.
[DOI]
|
[4] |
BUDOFF MJ, NAKAZATO R, MANCINI GB, et al. CT angiography for the prediction of hemodynamic significance in intermediate and severe lesions: head-to-head comparison with quantitative coronary angiography using fractional flow reserve as the reference standard[J]. J Am Coll Cardiol Img, 2016, 9(5): 559-564.
[DOI]
|
[5] |
DANAD I, RAIJMAKERS PG, DRIESSEN RS, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve[J]. JAMA Cardiol, 2017, 2(10): 1100-1107.
[DOI]
|
[6] |
MONTALESCOT G, SECHTEM U, ACHENBACH S, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the Management of Stable Coronary Artery Disease of the European Society of Cardiology[J]. Eur Heart J, 2013, 34(28): 2949-3003.
|
[7] |
FIHN SD, BLANKENSHIP JC, ALEXANDER KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons[J]. J Am Coll Cardiol, 2014, 64(18): 1929-1949.
[DOI]
|
[8] |
HIROHATA K, KANO A, GORYU A, et al. A novel CT-FFR method for the coronary artery based on 4D-CT image analysis and structural fluid analysis[J]. SPIE Medical Imaging, 2015, 9412.
[DOI]
|
[9] |
KATO M, HIROHATA K, KANO A, et al. Fast CT-FFR analysis method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis[C]. In Proceedings of the American Society of Mechanical Engineers 2015 International Mechanical Engineering Congress and Exposition. NY: ASME 2015: 51124.
|
[10] |
FUJIMOTO S, KAWASASKI T, KUMAMARU KK, et al. Diagnostic performance of on-site computed CT-fractional flow reserve based on fluid structure interactions: comparison with invasive fractional flow reserve and instantaneous wave-free ratio[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(3): 343-352.
[DOI]
|
[11] |
IHDAYHID AR, SAKAGUCHI T, LINDE JJ, et al. Performance of computed tomography-derived fractional flow reserve using reduced-order modelling and static computed tomography stress myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(11): 1234-1243.
[DOI]
|
[12] |
AGATSTON AS, JANOWITZ WR, HILDNER FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography[J]. J Am Coll Cardiol, 1990, 15(4): 827-832.
[DOI]
|
[13] |
HAUSLEITER J, MEYER T, HERMANN F, et al. Estimated radiation dose associated with cardiac CT angiography[J]. JAMA, 2009, 301(5): 500-507.
[DOI]
|
[14] |
LEIPSIC J, ABBARA S, ACHENBACH S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee[J]. J Cardiovasc Comput Tomogr, 2014, 8(5): 342-358.
[DOI]
|
[15] |
DELONG ER, DELONG DM, CLARKE-PEARSON DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[J]. Biometrics, 1988, 44(3): 837-845.
[DOI]
|
[16] |
KO BS, CAMERON JD, MUNNUR RK, et al. Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis[J]. JACC Cardiovasc Imaging, 2017, 10(6): 663-673.
[DOI]
|
[17] |
孙昊, 高明明, 马展鸿, 等. 冠状动脉钙化对64层螺旋CT诊断冠状动脉狭窄的影响[J]. 中华放射学杂志, 2007, 41(10): 1023-1027. [DOI]
|
[18] |
NORGAARD B, GAUR S, LEIPSIC J, et al. Influence of Coronary calcification on the diagnostic performance of CT angiography derived FFR in coronary artery disease: a substudy of the NXT trial[J]. JACC Cardiovascular Imaging, 2015, 8(9): 1045-1055.
[DOI]
|
[19] |
YANG DH, KIM YH, ROH JH, et al. Diagnostic performance of on-site CT derived fractional flow reserve versus CT perfusion[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(4): 432-440.
[DOI]
|
[20] |
COENEN A, ROSSI A, LUBBERS MM, et al. Integrating CT myocardial perfusion and CT-FFR in the work-up of coronary artery disease[J]. JACC Cardiovasc Imaging, 2017, 10(7): 761-770.
[URI]
|
[21] |
PONTONE G, BAGGIANO A, ANDREINI D, et al. Stress computed tomography perfusion versus fractional flow reserve CT derived in suspected coronary artery disease: the PERFECTION Study[J]. JACC Cardiovasc Imaging, 2019, 12(8 Pt 1): 1487-1497.
[URI]
|
[22] |
VAN ASSEN M, DE CECCO CN, EID M, et al. Prognostic value of CT myocardial perfusion imaging and CT-derived fractional flow reserve for major adverse cardiac events in patients with coronary artery disease[J]. J Cardiovasc Comput Tomogr, 2019, 13(3): 26-33.
[DOI]
|