2. 浙江省农业科学院植物保护与微生物研究所-农产品 质量安全危险因子和风险防控国家重点实验室(筹) 杭州 310021
2. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products-Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
婴儿胃肠道的微生物定植是人类生命周期中的一个重要过程,因为微生物群和宿主建立的相互作用对人类健康和疾病具有重要影响。传统上,人们认为出生时肠道是无菌的[1],很快被来自母体和周围环境的微生物定植,此理论依据是不能从羊水或婴儿的皮肤表面培养细菌。然而,随着16SRNA测序技术的出现,一些研究表明,健康宿主的胎粪实际上不是无菌的,肠道定植开始于出生前[2-4],4~6个月时达到成年人的水平,1岁以后肠道菌群的种类趋于稳定。与足月儿相比,早产儿的肠道细菌定植模式被描述为延迟和异常[5]。在生命的最初几周,异常的肠道定植可能改变宿主微生物群的屏障、营养和免疫功能,从而增加对疾病的易感性[6-7]。其中,腹胀为新生儿期常见症状之一,也是危重患儿病情恶化的征兆,尤其多见于早产儿。新生儿腹胀以气腹多见,如新生儿坏死性小肠结肠炎、乳糖不耐受等疾病相关临床表现与气体的大量产生密切相关。已被证实,肠道内大部分气体不是由人类宿主产生的,而是肠道微生物发酵后的产物[8],这些气体包括二氧化碳、氢气、甲烷和硫化氢[9]。目前已有研究者报道成年人肠道气体经肛门的排泄率为1.48 mL/min,经肛门所排出气体的主要组分为氮气(59%),氢气(20.9%),二氧化碳(9%),甲烷(7.2%),氧气(3.9%)和硫化氢(0.000 28%)[10-11],而新生儿肠道微生物的产气量及各种气体所占的比例暂未见报道。
目前肠道发酵气体常用的检测设备是呼吸气体测定仪,其检测到的气体组成及所占比例更接近于胃内气体的组成成分,该仪器主要用于诊断小肠部分细菌的过度生长和过度发酵[12-13]。而对结肠部位细菌活性产生气体的检测目前除了检测屁的组成成分[11],没有可靠的方案和设备,特别是对新生儿这类无法应用呼吸气体测定仪、不便收集经肛门排出的气体的研究对象。本实验所应用的国内首创的体外发酵模型与气体分析仪,是直接将受试者的粪便悬液接种于培养基中进行体外发酵,从而检测气体成分,更能准确地检测出受试者结肠部位微生物所产气体的含量、组成成分及各成分所占比例。与呼吸气体测定仪相比,本技术可适用人群较广,且所测气体的相关数值更接近于结肠部位的气体产量及组成成分。相对于屁的成分的检测,本技术所产生的误差较小,且更方便进行。
本文纳入处于新生儿期的早产儿,研究其出生后不同日龄时肠道微生物的产气量及二氧化碳、氢气、甲烷、硫化氢所占比例,希望对新生儿坏死性小肠结肠炎、乳糖不耐受等疾病的病理机制研究提供新的思路和方法。
资料和方法纳入/排除标准 纳入标准:出生时胎龄≥28周且 < 37周,并获得父母书面知情同意;排除标准:有畸形或代谢性疾病,或未获得父母书面知情同意。
一般资料 招募2020年5月1日—6月1日期间生后即入上海市儿童医院治疗的19名早产儿,被纳入研究的早产儿均符合上述标准,另外纳入12组不接种粪便的空白培养基作为对照。纳入研究的早产儿的平均胎龄为31周(28+1周~36+3周),平均体重为1 385.5 g(850~2 040 g),其中男婴12人、女婴7人;10名是顺产出生,9名是剖宫产出生(表 1)。
Number | Gestational age (week) |
Birth weight (g) | Gender | Delivery mode |
1 | 31+4 | 1 300 | Male | Cesarean section |
2 | 30 | 1 430 | Male | Vaginal |
3 | 32+3 | 1 460 | Male | Cesarean section |
4 | 36+3 | 1 770 | Male | Cesarean section |
5 | 29+6 | 1 485 | Male | Vaginal |
6 | 32 | 1 595 | Male | Cesarean section |
7 | 33+2 | 1 480 | Female | Cesarean section |
8 | 33+1 | 1 645 | Male | Cesarean section |
9 | 28+1 | 1 125 | Male | Vaginal |
10 | 28+1 | 1 050 | Female | Vaginal |
11 | 28+1 | 970 | Male | Vaginal |
12 | 34+1 | 2 040 | Male | Vaginal |
13 | 29+1 | 1 415 | Female | Cesarean section |
14 | 31+3 | 985 | Female | Cesarean section |
15 | 28+3 | 1 040 | Male | Vaginal |
16 | 31+3 | 1 575 | Female | Vaginal |
17 | 32+2 | 1 560 | Male | Vaginal |
18 | 29+6 | 850 | Female | Cesarean section |
19 | 31+1 | 1 550 | Female | Vaginal |
粪便样本收集及处理 在受试者出生的1个月内,采用常规粪便取样盒分别在其生后3天内、1周、2周、3周、4周时刮取尿不湿表面新鲜粪便,用厌氧磷酸缓冲液(PBS)配制成质量浓度为100 g/L的粪便悬液,混匀后用0.125 mm的无菌金属筛过滤除去大的食物残渣,接种0.5 mL粪便悬液进入15 mL密封培养基中。实验所采用的4种培养基为:培养基LAT(以乳糖为主要碳源)、培养基FOS(以低聚果糖为主要碳源)、培养基FL-2(以母乳低聚糖中的2’-岩藻糖基乳糖为主要碳源)和培养基GOS(以低聚半乳糖为主要碳源)。培养基其他共有组分包括:胰蛋白胨10 g/L;酵母提取物2.5 g/L;L-半胱氨酸1 g/L;血红素2 mL/L;NaCl 0.9 g/L;CaCl2·6H2O 0.09 g/L;KH2PO4 0.45g/L;K2HPO4 0.45 g/L;MgSO4·7H2O 0.09 g/L;维生素I 200 μL/L;刃天青(1 g/L)1 mL。维生素I溶液包括:生物素0.05 g/L,钴胺素0.05 g/L,对氨基苯甲酸0.15 g/L,叶酸0.25 g/L,吡哆胺0.75 g/L。
体外发酵 本研究采用批量发酵系统进行[14]。将500 μL处理好的新鲜粪便接种液接种到培养基中,然后放置到37 ℃的恒温培养箱中培养24 h。
气体测量 基于体外模拟平台,批量液体培养肠道菌群,使其产生气体,而后用肠道微生物发酵气体分析仪检测其产气总量与二氧化碳、氢气、甲烷和硫化氢所占比例。
统计学分析 采用SPSS 24.0统计软件对各组间产气量、各种气体所占比例进行统计学分析。计量资料不符合正态分布,以中位数(四分位间距)即M(P25,P75)表示,组间比较采用Kruskal-Wallis检验。P < 0.05为差异有统计学意义,P < 0.01为差异有显著统计学意义。
结果24小时产气总量 如图 1和表 2所示,随着日龄的增加,各培养基组总产气量呈递增趋势,间接证明随着早产儿日龄增加,肠道菌群的数量及多样性增加。早产儿相同日龄下,培养基LAT、FOS、FL-2、GOS组间相比,培养基LAT组的产气总量最大,培养基FL-2组产气量最小。
![]() |
★: Extreme value; 〇: Discrete value; None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4:Four weeks after birth. 图 1 各组产气总量差异图 Fig 1 Difference of total gas production among four media |
[mL, M(P25, P75)] | |||||||||||||||||||||||||||||
Culture medium | None | D3 | W1 | W2 | W3 | W4 | H value | P | |||||||||||||||||||||
LAT | 0 (0, 0) |
0.014 1 (0, 0.308 0) |
0.016 5 (0, 0.664 0) |
0.590 2 (0.007 6, 1.718 8) |
0.705 2 (0.062 5, 1.965 9) |
1.644 5 (0.072 1, 2.480 6) |
35.698 | 0.000 | |||||||||||||||||||||
FOS | 0 (0, 0) |
0 (0, 0.767 2) |
0.032 2 (0, 0.598 4) |
0.196 9 (0, 1.706 1) |
0.640 7 (0.127 8,1.552 0) |
0.910 8 (0.248 8, 1.559 0) |
37.405 | 0.000 | |||||||||||||||||||||
FL-2 | 0 (0, 0) |
0 (0, 0.075 8) |
0.127 5 (0, 0.241 2) |
0.140 0 (0, 0.435 2) |
0.438 7 (0.203 5, 0.653 9) |
0.413 1 (0.254 4, 0.803 4) |
42.696 | 0.000 | |||||||||||||||||||||
GOS | 0 (0, 0) |
0 (0, 0.747 1) |
0.130 1 (0, 0.579 0) |
0.145 7 (0, 1.708 3) |
0.584 1 (0.163 1, 1.541 5) |
1.417 7 (0.184 0, 1.745 2) |
35.663 | 0.000 | |||||||||||||||||||||
None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3: Three weeks after birth; W4: Four weeks after birth. |
二氧化碳所占比例 如图 2和表 3所示,在4种培养基中,早产儿出生后第2周时开始产生数量较多的二氧化碳,早产儿相同日龄下,培养基LAT、FOS、FL-2、GOS组间相比,培养基FL-2组产二氧化碳量最小。
![]() |
★: Extreme value; 〇: Discrete value; None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4:Four weeks after birth. 图 2 各组二氧化碳所占比例差异图 Fig 2 The proportion difference of carbon dioxide among four media |
[%, M(P25, P75)] | |||||||||||||||||||||||||||||
Culture medium | None | D3 | W1 | W2 | W3 | W4 | H value | P | |||||||||||||||||||||
LAT | 0 (0, 0) |
0 (0, 1.227 6) |
0 (0, 2.812 1) |
9.105 8 (0.243 8, 24.948 2) |
3.028 3 (0.441 3, 33.792 0) |
18.367 6 (0, 32.831 4) |
35.431 | 0.000 | |||||||||||||||||||||
FOS | 0 (0, 0) |
0 (0, 1.414 4) |
0 (0, 2.113 4) |
4.249 5 (0, 25.726 1) |
1.407 6 (0.235 5, 26.290 9) |
17.891 0 (0, 25.702 4) |
26.632 | 0.000 | |||||||||||||||||||||
FL-2 | 0 (0, 0) |
0 (0, 0.223 9) |
0.056 2 (0, 0.216 3) |
0.107 6 (0, 2.004 7) |
0.667 8 (0.108 7, 1.814 8) |
1.079 3 (0.120 5, 4.285 1) |
31.339 | 0.000 | |||||||||||||||||||||
GOS | 0 (0, 0) |
0 (0, 1.790 9) |
0.055 4 (0, 1.243 2) |
3.291 9 (0, 22.613 5) |
1.580 4 (0.053 7, 30.784 1) |
22.921 7 (0.051 9, 35.910 6) |
30.275 | 0.000 | |||||||||||||||||||||
None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4:Four weeks after birth |
甲烷所占比例 如图 3和表 4所示,在4种培养基中,空白对照组与早产儿出生后3天内、1周、2周、3周、4周时均检测到了甲烷,培养基LAT、FOS、FL-2中检测到甲烷的差异无统计学意义,培养基GOS中检测到甲烷的差异有统计学意义。
![]() |
★: Extreme value; 〇: Discrete value; None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4:Four weeks after birth. 图 3 各组甲烷所占比例差异图 Fig 3 The proportion difference of methane in each medium |
[%, M(P25, P75)] | |||||||||||||||||||||||||||||
Culture medium | None | D3 | W1 | W2 | W3 | W4 | H value | P | |||||||||||||||||||||
LAT | 0.1666 (0.0049, 0.4917) |
0.0285 (0, 0.3046) |
0.3674 (0.1191, 0.6925) |
0.1488 (0, 0.4235) |
0.3679 (0, 0.4332) |
0.2633 (0, 0.5540) |
6.311 | 0.277 | |||||||||||||||||||||
FOS | 0.3474 (0.1026, 0.7854) |
0.1225 (0, 0.4600) |
0.2337 (0.1015, 0.4522) |
0.1890 (0, 0.4241) |
0.2692 (0, 0.4137) |
0.2400 (0.1164, 0.4326) |
2.538 | 0.771 | |||||||||||||||||||||
FL-2 | 0.1135 (0, 0.5913) |
0.2258 (0, 0.4476) |
0.2722 (0, 0.4385) |
0 (0, 0.1926) |
0.4195 (0.1770, 0.6659) |
0.3040 (0.1248, 0.3943) |
4.072 | 0.539 | |||||||||||||||||||||
GOS | 0.3020 (0.0198, 0.4719) |
0.1694 (0.0665, 0.3476) |
0.2158 (0, 0.4551) |
0.0448 (0, 0, 3152) |
0.2400 (0.0050, 0.5533) |
0.3732 (0.2046, 0.6183) |
9.779 | 0.082 | |||||||||||||||||||||
None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3: Three weeks after birth; W4: Four weeks after birth |
氢气所占比例 如图 4和表 5所示,在培养基LAT、FOS、FL-2、GOS中,均发现早产儿出生后第2周开始产生数量较多的氢气。无论早产儿处于何种日龄,培养基LAT中产H2的量均最多,培养基FL-2中产氢气的量均最少。
![]() |
★: Extreme value; 〇: Discrete value; None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4:Four weeks after birth. 图 4 各组氢气所占比例差异图 Fig 4 The proportion difference of hydrogen in each medium |
[%, M(P25, P75)] | |||||||||||||||||||||||||||||
Culture medium | None | D3 | W1 | W2 | W3 | W4 | H value | P | |||||||||||||||||||||
LAT | 0 (0, 0) |
0 (0, 0.0064) |
0 (0, 1.646 8) |
7.465 9 (0, 27.520 0) |
1.444 0 (0, 28.286 2) |
15.682 0 (0, 33.180 8) |
26.904 | 0.000 | |||||||||||||||||||||
FOS | 0 (0, 0) |
0 (0, 0.5118) |
0 (0, 0.289 8) |
0.210 6 (0, 22.715 1) |
0.195 6 (0, 12.412 1) |
6.930 7 (0, 13.624 7) |
20.494 | 0.000 | |||||||||||||||||||||
FL-2 | 0 (0, 0) |
0 (0, 0) |
0 (0, 0) |
0 (0, 0.192 6) |
0 (0, 0.251 1) |
0 (0, 2.246 0) |
10.405 | 0.065 | |||||||||||||||||||||
GOS | 0 (0, 0) |
0 (0, 0) |
0 (0, 0) |
2.203 2 (0, 23.370 6) |
0.008 3 (0, 17.555 3) |
13.519 2 (0, 26.804 9) |
23.525 | 0.000 | |||||||||||||||||||||
None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3: Three weeks after birth; W4: Four weeks after birth. |
硫化氢所占比例 如图 5和表 6所示,在培养基LAT、FOS、FL-2、GOS中,均发现早产儿出生后第2周方才产生一定数量的硫化氢。无论早产儿处于何种日龄,培养基FL-2中产H2S的量均最少。
![]() |
★: Extreme value; 〇: Discrete value; None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4:Four weeks after birth. 图 5 各组硫化氢所占比例差异图 Fig 5 The proportion difference of hydrogen sulfide in each medium |
[%, M(P25, P75)] | |||||||||||||||||||||||||||||
Culture medium | None | D3 | W1 | W2 | W3 | W4 | H value | P | |||||||||||||||||||||
LAT | 0.006 3 (0, 0.029 3) |
0 (0, 0) |
0 (0, 0) |
0.049 0 (0, 0.308 1) |
0 (0, 0.225 2) |
0.142 8 (0, 0.328 7) |
16.305 | 0.005 | |||||||||||||||||||||
FOS | 0.055 2 (0, 0.032 9) |
0 (0, 0) |
0 (0, 0) |
0 (0, 0.243 8) |
0 (0, 0.181 2) |
0.178 0 (0, 0.121 2) |
12.925 | 0.024 | |||||||||||||||||||||
FL-2 | 0.009 3 (0, 0.019 6) |
0 (0, 0) |
0 (0, 0) |
0 (0, 0) |
0 (0, 0.006 7) |
0 (0, 0.120 0) |
17.881 | 0.003 | |||||||||||||||||||||
GOS | 0.003 2 (0, 010 6) |
0 (0, 0) |
0 (0, 0) |
0.000 1 (0, 0.268 7) |
0 (0, 0.191 3) |
0.106 2 (0, 0.305 7) |
21.446 | 0.000 | |||||||||||||||||||||
None: Blank control group; D3:Three days after birth; W1:One week after birth; W2:Two weeks after birth; W3:Three weeks after birth; W4: Four weeks after birth. |
4种气体所占比例的对比 如图 6所示,早产儿出生后肠道微生物即可产生甲烷,但是,随着早产儿日龄的增加,甲烷所占比例无明显变化。早产儿出生后第2周,方才检测出数量较多的二氧化碳、氢气、硫化氢。早产儿出生后第2~4周时,这4种气体所占比例的递减排序均为:二氧化碳、氢气、甲烷、硫化氢。
![]() |
图 6 各组甲烷、二氧化碳、氢气、硫化氢所占比例差异图 Fig 6 Proportion difference of carbon dioxide, methane, hydrogen and hydrogen sulfide in each medium |
既往研究通过检测呼出气体的成分,认为儿童3岁以前从未检测到甲烷,随着年龄增长,甲烷的产生也在增加,3岁和4岁儿童平均值为6.4%,直到10岁时达到成年分布[15-16]。然而,呼吸中不排出CH4的患者实际上可以在结肠气体中存在甲烷[17],Rutili等[18]在一名27个月的受试者中检出了产甲烷菌。Dridi等[19]通过改进的DNA检测证实了产甲烷菌M.smithii和M.stadtmanae在人类肠道中的高流行率,前者几乎是肠道微生物群落中普遍存在的寄居者,其实验的受试者年龄最小为1个月。
本研究利用体外发酵模拟平台及气体检测仪检测早产儿出生后4周内肠道微生物的产气情况,结果显示:空白对照组与早产儿出生后3天内、1周、2周、3周、4周时均检测到甲烷的产生。然而,培养基LAT、FOS、FL-2中各组检测到的甲烷的差异无统计学意义,培养基GOS中各组检测到的甲烷的差异有统计学意义。由此可引出两种假设:(1)早产儿出生后4周内肠道微生物也许即可经过发酵产生甲烷;(2)我们所检测到的甲烷也许是培养基或是气体分析仪的数据基线。为进一步排除培养基和气体分析仪的问题,我们重新调试仪器,重新检测了空白对照组,所测气体数据均为0。但因本实验所收集的标本已失效,无法再次进行气体的检测,我们重新留取了早产儿出生后4周内的粪便进行体外发酵和气体检测,仍可检测到甲烷的产生,但因目前所纳入的样本量有限,无法得出准确结论。本实验将继续进行,并计划利用16sRNA测序技术检测早产儿出生后4周内的肠道菌群,以验证早产儿出生后4周内肠道菌群中是否含有产甲烷菌,其肠道微生物是否可产生甲烷。
氢气是肠道菌群发酵的常见气体产物,可通过3种方式消除:(1)通过屁从肛门排出;(2)吸收到系统循环和随后的呼吸排泄;(3)通过结肠微生物代谢。目前认为肠道微生物的消耗是消除氢气的主要方式[20],肠道氢气可以被肠道产甲烷菌用作代谢燃料来生产甲烷,而被乙酰乙酸和硫酸盐还原生物用作生产硫化氢[21]。本研究于早产儿出生后第2周方才检测到数量较多的氢气,而无论早产儿处于何种日龄,培养基LAT中产氢气的量均最多,说明在早产儿食物中添加乳糖会使肠道产氢气量增加。氢气呼出实验作为乳糖不耐受的诊断方法之一,诊断原理就是通过测定呼出的氢气水平反映乳糖的消化吸收状况[22],显然,这种方法并不适用于新生儿。本研究所采用的体外发酵模拟平台及气体检测仪,也许可成为研究乳糖不耐受的新手段。
硫化氢是一种刺激性有毒气体,在结肠中由内源性和自然产生的硫酸盐还原细菌产生,起着细胞保护和细胞毒性的作用[23-24]。越来越多的研究者提出硫化氢的产生增多与溃疡性结肠炎也许存在关系,但目前尚无有力的证据[25-26]。本实验结果显示,早产儿出生后第2周可检测到硫化氢,但并非所有的早产儿均可检测到,且大部分早产儿产生量极少。有1例坏死性小肠结肠炎患儿被检测到较多的硫化氢。硫化氢产生过多是否与新生儿坏死性小肠结肠炎之间存在一定的联系,值得进一步研究。
通过培养基LAT、FOS、FL-2、GOS组间的对比,我们发现:无论受试者处于何种日龄,培养基FL-2中产气总量均最少,而培养基LAT中产气总量最多;培养基FL-2中二氧化碳、氢气、硫化氢所占比例较少,在培养基LAT中较多,说明适当提高早产儿食物中母乳低聚糖的所占比例可减少早产儿肠道内气体的产生,减少腹胀的发生,部分解释了母乳喂养的好处。相比之下,若受试者结肠部位存在大量的乳糖,肠道内产气将会增加,从而引发腹胀症状,与临床上乳糖不耐受患儿常出现腹胀症状[27]的情况一致。同时,本实验结果也许提示我们,乳糖不耐受患儿较正常新生儿肠道产气中二氧化碳、氢气、硫化氢的浓度明显增高,而甲烷的浓度无明显变化,此结论尚需大样本实验进一步验证。
与之前所报道的成年人经肛门所排出气体的主要的组份为氮气(59%),氢气(20.9%),二氧化碳(9%),甲烷(7.2%),氧气(3.9%)和硫化氢(0.000 28%)不同,本实验所测的早产儿肠道产气各组成成分所占比例的递减顺序为:二氧化碳、氢气、甲烷、硫化氢,由于技术限制,本实验未检测早产儿肠道产气中氮气、氧气所占比例,这是本实验有待改进之处。
本研究还存在以下不足之处:(1)纳入的例数较少;(2)开展地点仅限上海市儿童医院;(3)未能研究性别、产式、胎龄、喂养方式、生后Apgar评分、抗生素的使用等因素对早产儿肠道微生物产气的影响;(4)未能进行足月儿与早产儿肠道微生物产气的差异研究等。因此,本研究所得结果只是肠道微生物产气方面的初步探索,需增大样本量进一步研究。同时,新生儿坏死性小肠结肠炎、新生儿乳糖不耐受、败血症等疾病是否会影响肠道微生物产气,如果有影响,其差异是否具有特异性,这种差异是否有助于疾病的早期诊断等,均是今后研究方向。
作者贡献声明 王雪芳 实验构思与设计,数据采集,数据分析,绘制图表,论文撰写和修订。李娟,李娜 实验构思与设计,数据采集,数据整理与保存,论文修订。尹迪,张华婷 数据统计与分析,论文修订。朱立颖 提供材料、样品、试剂、案例。龚小慧 论文修订。胡勇 可行性分析,监督指导,获取资助,论文修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
ELGIN TG, KERN SL, MCELROY SJ. Development of the neonatal intestinal microbiome and its association with necrotizing enterocolitis[J]. Clin Ther, 2016, 38(4): 706-715.
[DOI]
|
[2] |
HANSEN R, SCOTT KP, KHAN S, et al. First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota[J]. PLoS One, 2015, 10(7): e0133320.
[DOI]
|
[3] |
JIMENEZ E, FERNANDEZ L, MARIN ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section[J]. Curr Microbiol, 2005, 51(4): 270-274.
[DOI]
|
[4] |
MAGNE F, ABELY M, BOYER F, et al. Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles[J]. FEMS Microbiol Ecol, 2006, 57(1): 128-138.
[DOI]
|
[5] |
SCHWIERTZ A, GRUHL B, LOBNITZ M, et al. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants[J]. Pediatr Res, 2003, 54(3): 393-399.
[DOI]
|
[6] |
CLAUD EC WW. Hypothesis: inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis[J]. FASEB J, 2001, 15(8): 1398-1403.
[DOI]
|
[7] |
DE LA COCHETIERE MF, PILOQUET H, ROBERT CDES, et al. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of Clostridium[J]. Pediatr Res, 2004, 56(3): 366-370.
[DOI]
|
[8] |
PIMENTEL M, MATHUR R, CHANG C. Gas and the microbiome[J]. Curr Gastroenterol Rep, 2013, 15(12): 356.
[DOI]
|
[9] |
LEVITT MD. Volume and composition of human intestinal gas determined by means of an intestinal washout technic[J]. N Engl J Med, 1971, 284(25): 1394-1398.
[DOI]
|
[10] |
SAHAKIAN AB, JEE SR, PIMENTEL M. Methane and the gastrointestinal tract[J]. Dig Dis Sci, 2010, 55(8): 2135-2143.
[DOI]
|
[11] |
KRIK E. The quantity and composition of human colonic flatus[J]. Gastroenterology, 1949, 12(5): 782-794.
[DOI]
|
[12] |
LOSURDO G, LEANDRO G, IERARDI E, et al. Breath tests for the non-invasive diagnosis of small intestinal bacterial overgrowth: A systematic review with meta-analysis[J]. Neurogastroenterol Motil, 2020, 26(1): 16-28.
[DOI]
|
[13] |
KHOSHINI R, DAI SC, LEZCANO S, et al. A systematic review of diagnostic tests for small intestinal bacterial overgrowth[J]. Dig Dis Sci, 2008, 53(6): 1443-1454.
[DOI]
|
[14] |
LEI F, YIN Y, WANG Y, et al. Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses[J]. Appl Environ Microbiol, 2012, 78(16): 5763-5772.
[DOI]
|
[15] |
BOND JH ER, LEVITT MD. Factors influencing pulmonary methane excretion in man.An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria[J]. Exp Med, 1971, 133(3): 572-588.
[DOI]
|
[16] |
PELED Y GT, LIBERMAN E. The development of methane production in childhood and adolescence[J]. Pediatr Gastroenterol Nutr, 1985, 4(4): 575-579.
[DOI]
|
[17] |
MCKAY LF EM, BRYDON WG. Methane excretion in man-a study of breath, flatus, and faeces[J]. Gut, 1985, 26(1): 69-74.
[DOI]
|
[18] |
RUTILI A, CANZI E, BRUSAT, et al. Intestinal methanogenic bacteria in children of different ages[J]. New Microbiol, 1996, 19(3): 227-243.
|
[19] |
DRIDI B, HENRY M, KHECHINE AEL, et al. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol[J]. PLoS One, 2009, 4(9): e7063.
[DOI]
|
[20] |
STROCCHI A, LEVITT MD. Maintaining intestinal H2 balance: Credit the colonic bacteria[J]. Gastroenterology, 1992, 102(4): 1424-1426.
[DOI]
|
[21] |
GIBSON GR, CUMMINGS JH, MACFARLANE GT. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine[J]. Appl Bacteriol, 1988, 65(3): 241-247.
[DOI]
|
[22] |
LAW D, CONKLIN J, PIMENTEL M. Lactose intolerance and the role of the lactose breath test[J]. Am J Gastroenterol, 2010, 105(8): 1726-1728.
[DOI]
|
[23] |
MEDANI M, COLLINS D, DOCHERTY NG, et al. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology[J]. Inflamm Bowel Dis, 2011, 17(7): 1620-1625.
[DOI]
|
[24] |
SOBHANI I, LE GOUVELLO S. Critical role for CD8+FoxP3+ regulatory T cells in colon cancer immune response in humans[J]. Gut, 2009, 58(6): 743-744.
[DOI]
|
[25] |
WANG R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed[J]. Physiol Rev, 2012, 92(2): 791-896.
[DOI]
|
[26] |
PICTON R, EGGO MC, LANGMAN MJS, et al. Impaired detoxication of hydrogen sulfide in ulcerative colitis?[J]. Dig Dis Sci, 2007, 52(2): 373-378.
[DOI]
|
[27] |
HE T, PRIEBE M, HARMSEN H, et al. Colonic fermentation may play a role in lactose intolerance in humans[J]. Nutr, 2006, 136(1): 58-63.
[DOI]
|