2. 上海市肾病与透析研究所 上海 200032;
3. 上海市肾脏疾病与血液净化重点实验室 上海 200032;
4. 上海市肾脏疾病临床医学中心 上海 200032
2. Shanghai Institute of Kidney Disease and Dialysis, Shanghai 200032, China;
3. Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai 200032, China;
4. Shanghai Medical Center of Kidney, Shanghai 200032, China
人体内共生的细菌多达1014个,是人体自身细胞总数的10倍,其中大部分细菌定植在肠道。肠道菌群作为复杂的微生态系统,对人体的健康起着至关重要的作用。已有许多研究发现,肾脏病患者常常伴有肠道菌群的紊乱,而肠道菌群紊乱也会加速肾脏疾病的进程[1-3]。基于调节肠道菌群的不同治疗方案可能为肾脏疾病提供新的个体化治疗策略。
肠道菌群的构成和作用 人体肠道表面积约有一个网球场大小(200 m2),包含500~1 000个细菌种类,是含有细菌数目和种类最多的器官。每个人肠道菌群的组成都是独一无二的。采用16S rRNA序列分析发现,人体内最主要的两类肠道菌群为拟杆菌门和厚壁菌门,共占全部肠道菌群的98%,而变形菌门、疣微菌门、放线菌门和梭杆菌门等只占一小部分[4]。
肠道菌群与人体的健康和疾病状态密不可分,在体内保持着动态平衡。宿主的遗传基因、出生早期细菌暴露、饮食、吸烟、饮酒、抗生素、质子泵抑制剂和罹患各种疾病等因素都会引起肠道菌群的改变。肠道菌群的紊乱也会牵涉到许多慢性疾病,如炎症性肠病[5]、肥胖[6]、2型糖尿病[7]、动脉粥样硬化[8]、抑郁症[9]、慢性肾脏病(chronic kidney disease,CKD)[2],甚至癌症的发生[10]。
肠道菌群的生理作用有以下几点:(1)参与人体的营养和能量代谢,包括促进碳水化合物的吸收,合成氨基酸(赖氨酸、苏氨酸等)和维生素(维生素K,维生素B等)来维持体内氮和微量元素的平衡[11];(2)维持肠道上皮稳态,并参与免疫防御,能保护宿主对抗病原体的侵袭,减少机体对食物和环境中抗原的过敏反应[12];(3)产生各种具有生物活性的代谢产物,有些是对人体有益的,如短链脂肪酸(short-chain fatty acids,SCFAs),包括醋酸盐、丁酸盐、丙酸盐等;有些是对人体有害的尿毒症毒素,如硫酸吲哚酚(indoxyl sulfate,IS)、硫酸对甲酚(p-cresyl sulfate,PCS)和氧化三甲胺(trimethylamine-N-oxide,TMAO)等。
肠道菌群与慢性肾脏病 CKD患者的肠道菌群在数量上和结构上会发生改变。Lun等[13]比较了CKD患者与健康人的粪便菌群,发现CKD患者肠道中拟杆菌门和变形菌门增加,厚壁菌门减少;与健康人相比,CKD患者中分别有12个或19个细菌种系显著升高或降低,这31个细菌种系可被用作区分CKD患者和健康人的肠道菌群标志物,尤其是毛螺旋菌和瘤胃球菌。Wu等[14]研究发现,9个细菌种属与CKD分期高度相关,其中帕拉普氏菌属和假丁酸弧菌属等在鉴别CKD和健康人方面优于尿蛋白/肌酐比值。由此可见,肠道菌群可以作为CKD的诊断和分期的标志物。
CKD患者肠道菌群紊乱的原因可能是:(1)CKD患者肠道尿素的肠肝循环增加,导致肠道菌群尿素酶水解尿素作用值上升,产生更多的NH3/NH4OH,使肠腔内pH上升,引起肠道菌群的构成发生改变,其中条件致病菌增多,有益菌减少[15];(2)肠道屏障功能受损:研究发现尿毒症大鼠结肠黏膜紧密连接蛋白claudin-1、ZO1和闭合蛋白显著减少,而尿毒症患者肠壁水肿和血透引起的间歇性低血压可能会加剧上述屏障功能损害[16];(3)医源性因素,例如铁剂、抗生素、钙磷调节剂的服用。其中口服铁剂会导致变形菌门增加,而口服抗生素会降低肠道菌群的多样性[17];(4)饮食结构改变:肾脏病患者为了避免高钾血症而限制摄入香蕉、豆类、坚果等,这些食物富含抗性淀粉,能分解产生对机体有益的SCFA,SCFA可以为细胞提供能量,增加饱腹感,还能促进B细胞发育,上调Treg细胞,起到抑制结肠炎症的作用[18]。此外,蔬菜等纤维素摄入的减少会使食物在结肠中停留时间缩短,继而引起肠道菌群的改变。
肠道菌群紊乱将进一步加重肾脏损害,加速CKD进展。一方面,CKD患者肠道上皮紧密连接被NH3/NH4OH损伤,使肠道通透性增加,肠道内蓄积的尿毒症毒素、细菌和内毒素穿过肠壁进入血液循环,单核巨噬细胞系统被激活,释放大量细胞毒性物质,加剧CKD患者全身微炎症反应和内毒素血症[19-20]。另一方面,黏膜免疫系统激活,也会导致全身微炎症反应,使得肾功能进一步减退。CKD与肠道菌群紊乱相互作用,形成恶性循环。
基于以上研究结果,Meijers[21]和Pahl等[22]先后提出“肠-肾轴”学说,即肾脏和结肠之间具有双向调节作用。近年来又有许多学者在此基础上更新了肠道、肾脏、免疫三者的关系:CKD患者会出现肠道菌群的紊乱,而肠道菌群紊乱通过免疫反应的桥梁作用进一步加重了肾损伤[23]。
肠道菌群与终末期肾病 随着CKD的进展,患者肾功能进一步恶化,最终进入不可逆性终末期肾病(end-stage renal disease,ESRD)阶段。与CKD类似,ESRD同样伴有肠道菌群紊乱,且肠道菌群的紊乱也是促进CKD进展至ESRD的重要因素之一。肾功能减退是影响肠道菌群改变的独立危险因素[3]。Jiang等[24]观察了从CKD1期至ESRD期各个不同时期患者的肠道菌群变化,发现丁酸盐的产生菌Roseburia spp.和F.prausnitzii丰度逐渐下降,而C反应蛋白(C-reactive protein,CRP)逐渐增高。丁酸盐是SCFA中的一种,可以减轻肾损伤,减少局部炎症和系统性炎症[1]。Vaziri等[3]发现ESRD患者的肠道菌群多样性下降,有190种细菌可操作分类单元(operational taxonomic units,OTUs)的丰度与健康对照组存在显著差异。为了排除个体间差异和饮食等干扰,研究者通过5/6肾切除大鼠模型发现尿毒症大鼠同样存在肠道菌群多样性的下降,有175个OTUs与对照组存在显著差异,其中普雷沃氏菌科和乳杆菌科显著下降[3]。ESRD使肠道菌群的结构和数量发生了很大改变。
肠道菌群与腹膜透析、血液透析和肾移植 不同肾脏替代治疗的ESRD患者肠道菌群的构成亦有差异。腹透与肠道菌群的关系尤为密切。Wang等[25]发现腹透患者的肠道菌群总数较健康人下降,其中植物乳杆菌、肺炎克雷伯菌和肠球菌下降,而铜绿假单胞菌升高。也有研究发现腹透儿童肠道厚壁菌门和放线菌门较健康儿童减少[17]。此外,肠道菌群与腹透相关性腹膜炎也密切相关。由于腹透液中的葡萄糖可以通过肠道屏障进入肠腔,有利于肠道中可发酵葡萄糖的肠杆菌科生长,当肠道屏障损伤时这些细菌可迁入腹腔,从而引发腹膜炎。肠杆菌科细菌占腹透相关性腹膜炎病原菌的12%,其中最常见的是大肠埃希菌[26]。使用益生菌等微生物制剂调节肠道菌群,可能减少腹透相关性腹膜炎的发生,或治疗对抗生素耐药的腹腔细菌感染,这为腹透相关性腹膜炎的治疗提供了一个新的思路和方法。血透患者和健康人的肠道菌群在数量上和种类上亦存在差异,厚壁菌门和拟杆菌门主导了血透患者的肠道菌群,其中需氧菌如大肠埃希菌、肺炎链球菌、肠球菌的数量是健康人的100倍,厌氧菌如产气荚膜梭菌增加,双歧杆菌减少[27]。在儿童中,血透患儿与健康儿童相比,拟杆菌门增加,变形菌门减少[17]。近期也有研究报道固本泄浊饮结肠透析能改变尿毒症大鼠的肠道菌群,下调不动杆菌、蜡样芽孢杆菌、变形杆菌、福氏志贺菌、大肠埃希菌,上调双歧杆菌、乳酸菌、幽门螺杆菌,同时减少炎症因子IL-1β、IL-6和CRP的表达[28]。对于肾移植术后的患者,大剂量使用免疫抑制剂、预防性应用广谱抗生素、缺血/再灌注损伤及饮食限制等,可造成肠道菌群多样性下降、菌群数量改变和移植后腹泻[29]。肾移植儿童的双歧杆菌较健康儿童明显下降[17]。
肠道菌群与肾脏疾病的治疗 鉴于肠道菌群紊乱与肾脏疾病进展密切相关,如能改善肠道菌群的结构和数量,则可以减少肠源性尿毒症毒素的产生,从而改善全身微炎症状态,减轻肾损伤,延缓CKD进展。目前已报道的可以改善肠道菌群的治疗方法包括饮食疗法、益生菌、益生元、合生元、吸附剂和粪菌移植等。
饮食疗法 尿毒症毒素IS、PCS和TMAO等需要依靠食物来源的氨基酸或胆碱等,经肠道菌群分解代谢生成,它们被称为“肠源性尿毒症毒素”,通过饮食疗法可以从源头上减少尿毒症毒素的产生原料,调节肠道菌群的平衡。Patel等[30]发现素食主义者尿液中的IS和PCS较非素食者下降58%和62%,可能与素食提供更多的纤维素和更少的蛋白质有关。另一项随机对照试验也表明,增加食物中纤维素的摄入可以减少血透患者血清IS,而PCS虽然有下降但差异没有统计学意义[31]。纤维素摄入越少,肠道菌群的种类就越少[32]。增加纤维素的摄入,可以改善肠道菌群的种类,从而减少尿毒症毒素的产生,延缓CKD进展。另外,增加抗性淀粉的摄入,例如马铃薯、香蕉和大米等,可以增加产SCFA的细菌,减缓尿毒症大鼠肾功能丢失、间质纤维化、肾小管损伤和减少促炎因子活化[33],还能增加拟杆菌门/厚壁菌门比例,降低血清和尿液中IS和PCS浓度[34]。
益生菌 益生菌是一类对人体有益的、能改善肠道菌群结构的活性微生物,例如双歧杆菌和乳酸菌,它们可以通过产生醋酸和乳酸降低肠道pH值,并与病原菌竞争肠道上皮黏附位点和营养,从而抑制病原菌的增殖[15]。经过益生菌治疗的CKD患者血清PCS水平明显下降[35],亦有研究报道益生菌可以降低CKD4~5期患者血清尿素氮水平,减少并发症的发生,提高患者生活质量[36]。接受益生菌治疗的腹透患者血清促炎因子TNF-α、IL-5、IL-6和内毒素水平都较安慰剂组下降,而抗炎因子IL-10明显升高,对残余肾功能也有保护作用[37]。此外,益生菌也有降血压的作用,高盐饮食会引起Th17细胞数量增加,Th17细胞增加又会加剧高血压,而通过补充乳酸菌可以改善盐敏感状态[38]。由此可见,补充益生菌不仅可以减少尿毒症毒素,还能通过增加抗炎因子、降低促炎因子,改善全身微炎症和盐敏感状态,保护残余肾功能,减轻肾损伤。
益生元 益生元是一种不易被消化的食物成分,如菊粉、低聚果糖和乳果糖等。它们可以选择性地促进结肠中肠道菌群的生长和活动,还可以提高粪便中双歧杆菌的浓度,减少尿毒症毒素产生。Sueyoshi等[39]研究发现,喂食尿毒症大鼠乳果糖可以减轻肾小管间质纤维化,降低血清IS水平。此外,肠道中拟杆菌属、梭菌属等产生IS前体的细菌数目减少,而双歧杆菌属数目增加。菊粉可以发酵产生SCFAs,帮助肠道上皮细胞能量代谢,发挥促进健康的作用。研究发现腹透患者摄入菊粉型果糖后可以减少粪便中肠道菌群代谢产生的吲哚[40]。Devlin等[41]人工定植6种菌落在无菌小鼠肠道中,将标准饮食改为低聚果糖饮食,发现产色氨酸酶的B. thetaiotaomicron菌减少,尿液中IS也减少,提示可以通过调节饮食降低IS水平。另有研究发现,血透患者服用富含低聚果糖的菊粉4周后,血清中的PCS降低了20%[42]。但近期一项动物试验发现,给予TLR5基因敲除小鼠喂食含菊粉的饲料后,虽然小鼠体重减轻,代谢改善,但约有40%的小鼠发生了肝癌,同时小鼠肠道变形菌门和梭状芽孢杆菌属明显增多;研究者把菊粉换成果胶和低聚果糖这两种可溶性膳食纤维后,仍然观察到了肝癌的发生;而在肠道菌群没被破坏的野生型小鼠中,服用相同的菊粉并没有观察到诱发肝癌的现象[43]。因此,对于已有肠道菌群紊乱的CKD患者,服用益生元可能在一定程度上改善肾功能,但由此引发的潜在不良反应,例如肿瘤的发生,值得进一步关注。
合生元 合生元是益生菌和益生元的结合剂,研究发现,它不仅可以改善CKD患者肠道菌群的组成,表现为双歧杆菌属增加,疣微菌科减少,而且还能降低CKD患者和血透患者血清PCS浓度,但不能降低CKD患者血清IS浓度[44-45]。此外,合生元还可以改善炎症标志物,服用合生元的血透患者血清CRP、IL-6和抗热休克蛋白70水平均较益生菌组和安慰剂组显著降低[46]。
碳吸附剂 在尿毒症大鼠中,口服碳吸附剂AST-120能在肠道吸附吲哚,避免其进入血液循环,减轻IS和PCS对肾脏的损害,还能修复肠道上皮细胞紧密连接蛋白,减少内毒素水平,减轻氧化应激和炎症[47]。一项多中心临床试验入选了2 035例中重度的CKD患者,发现口服AST-120可以降低CKD患者的血清IS水平,但并不能改善CKD患者血肌酐翻倍、肾移植和ESRD的终点事件[48]。
粪菌移植 粪菌移植是近年来兴起的治疗肠道菌群功能紊乱的新方法,指的是将异体或自体的粪便处理后,制备成口服液、胶囊口服,或通过内镜、鼻饲管等将粪便移植到患者体内,使患者获得新的肠道菌群。该方法已被用于复发性艰难梭菌感染、炎症性肠病、慢性代谢性疾病和自身免疫性疾病等的治疗。目前粪菌移植在肾脏疾病治疗中的报道较少,但粪菌移植作为肾脏疾病的辅助治疗有着巨大的潜力。
结语 肠道菌群与肠源性尿毒症毒素的产生紧密相关,并在CKD和ESRD病情进展和并发症发生中起了重要作用,是肾脏疾病防治研究中有前景的新靶点。通过饮食、微生物制剂、吸附剂和粪便移植等途径调节肠道菌群,可以减少尿毒症毒素的产生、减轻肾间质纤维化、改善全身微炎症状态,从而可能延缓CKD进展,改善ESRD预后。近年来,肠道菌群与健康的关系已成为研究热点并取得了重大进展,但肠道菌群与肾脏疾病的研究尚处于起步阶段,部分研究并不深入且有一定的局限性,值得进一步研究和探讨。
[1] |
NALLU A, SHARMA S, RAMEZANI A, et al. Gut microbiome in chronic kidney disease:challenges and opportunities[J]. Transl Res, 2017, 179: 24-37.
[DOI]
|
[2] |
WING MR, PATEL SS, RAMEZANI A, et al. Gut microbiome in chronic kidney disease[J]. Exp Physiol, 2016, 101(4): 471-477.
[DOI]
|
[3] |
VAZIRI ND, WONG J, PAHL M, et al. Chronic kidney disease alters intestinal microbial flora[J]. Kidney Int, 2013, 83(2): 308-315.
[DOI]
|
[4] |
LEY RE, PETERSON DA, GORDON JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848.
[DOI]
|
[5] |
NI J, WU GD, ALBENBERG L, et al. Gut microbiota and IBD:causation or correlation?[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(10): 573-584.
[DOI]
|
[6] |
LEY RE, BACKHED F, TURNBAUGH P, et al. Obesity alters gut microbial ecology[J]. Proc Natl Acad Sci U S A, 2005, 102(31): 11070-11075.
[DOI]
|
[7] |
BOLLYKY PL, BICE JB, SWEET IR, et al. The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury[J]. PLoS One, 2009, 4(4): e5063.
[DOI]
|
[8] |
MENNI C, LIN C, CECELJA M, et al. Gut microbial diversity is associated with lower arterial stiffness in women[J]. Eur Heart J, 2018, 39(25): 2390-2397.
[DOI]
|
[9] |
KELLY JR, BORRE Y, C OB, et al. Transferring the blues:Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res, 2016, 82: 109-118.
[DOI]
|
[10] |
MOORE WE, MOORE LH. Intestinal floras of populations that have a high risk of colon cancer[J]. Appl Environ Microbiol, 1995, 61(9): 3202-3207.
[DOI]
|
[11] |
HOOPER LV, MIDTVEDT T, GORDON JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine[J]. Annu Rev Nutr, 2002, 22: 283-307.
[DOI]
|
[12] |
ALAM A, NEISH A. Role of gut microbiota in intestinal wound healing and barrier function[J]. Tissue Barriers, 2018, 6(3): 1539595.
[DOI]
|
[13] |
LUN H, YANG W, ZHAO S, et al. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease[J]. Microbiologyopen, 2019, 8(4): e00678.
[DOI]
|
[14] |
WU IW, LIN CY, CHANG LC, et al. Gut Microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease:discovery and validation study[J]. Inter J Biolo Sci, 2020, 16(3): 420-434.
[DOI]
|
[15] |
Bourke E, Milne MD, Stokes GS. Caecal pH and ammonia in experimental uraemia[J]. Gut, 1966, 7(5): 558-561.
[DOI]
|
[16] |
HOBBY GP, KARADUTA O, DUSIO GF, et al. Chronic kidney disease and the gut microbiome[J]. Am J Physiol.Renal Physiol, 2019, 316(6): F1211-F1217.
[DOI]
|
[17] |
CRESPO-SALGADO J, VEHASKARI VM, STEWART T, et al. Intestinal microbiota in pediatric patients with end stage renal disease:a Midwest Pediatric Nephrology Consortium study[J]. Microbiome, 2016, 4(1): 50.
[DOI]
|
[18] |
SMITH PM, HOWITT MR, PANIKOv N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573.
[DOI]
|
[19] |
VAZIRI ND, YUAN J, RAHIMI A, et al. Disintegration of colonic epithelial tight junction in uremia:a likely cause of CKD-associated inflammation[J]. Nephrol Dial Transplant, 2012, 27(7): 2686-2693.
[DOI]
|
[20] |
VAZIRI ND, YUAN J, NORRIS K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease[J]. Am J Nephrol, 2013, 37(1): 1-6.
[DOI]
|
[21] |
MEIJERS BK, EVENEPOEL P. The gut-kidney axis:indoxyl sulfate, p-cresyl sulfate and CKD progression[J]. Nephrol Dial Transplant, 2011, 26(3): 759-761.
[DOI]
|
[22] |
PAHL MV, VAZIRI ND. The chronic kidney disease-colonic axis[J]. Semin Dial, 2015, 28(5): 459-463.
[DOI]
|
[23] |
KNAUF F, BREWER JR, FLAVELL RAO. Immunity, microbiota and kidney disease[J]. Nat Rev Nephrol, 2019, 15(5): 263-274.
[DOI]
|
[24] |
JIANG S, XIE S, LV D, et al. A reduction in the butyrate producing species Roseburia spp.and Faecalibacterium prausnitzii is associated with chronic kidney disease progression[J]. Antonie Van Leeuwenhoek, 2016, 109(10): 1389-1396.
[DOI]
|
[25] |
WANG IK, LAI HC, YU CJ, et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients[J]. Appl Environ Microbiol, 2012, 78(4): 1107-1112.
[DOI]
|
[26] |
SZETO CC, CHOW VC, CHOW KM, et al. Enterobacteriaceae peritonitis complicating peritoneal dialysis:a review of 210 consecutive cases[J]. Kidney Int, 2006, 69(7): 1245-1252.
[DOI]
|
[27] |
HIDA M, AIBA Y, SAWAMURA S, et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis[J]. Nephron, 1996, 74(2): 349-355.
[DOI]
|
[28] |
HE H, HU P, TANG Y, et al. Influence of colonic dialysis using Gubenxiezhuo on the distribution of gut microflora in uremia rats[J]. J Cell Physiol, 2019, 234(7): 11882-11887.
[DOI]
|
[29] |
LEE JR, MAGRUDER M, ZHANG L, et al. Gut microbiota dysbiosis and diarrhea in kidney transplant recipients[J]. Am J Transplant, 2019, 19(2): 488-500.
[DOI]
|
[30] |
PATEL KP, LUO FJ, PLUMMER NS, et al. The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores[J]. Clin J Am Soc Nephrol, 2012, 7(6): 982-988.
[DOI]
|
[31] |
SIRICH TL, PLUMMER NS, GARDNER CD, et al. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients[J]. Clin J Am Soc Nephrol, 2014, 9(9): 1603-1610.
[DOI]
|
[32] |
ARONOV PA, LUO FJ, PLUMMER NS, et al. Colonic contribution to uremic solutes[J]. J Am Soc Nephrol, 2011, 22(9): 1769-1776.
[DOI]
|
[33] |
VAZIRI ND, LIU SM, LAU WL, et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease[J]. PLoS One, 2014, 9(12): e114881-e114881.
[DOI]
|
[34] |
KIEFFER DA, PICCOLO BD, VAZIRI ND, et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats[J]. Am J Physiol Renal Physiol, 2016, 310(9): F857-F871.
[DOI]
|
[35] |
GUIDA B, GERMANO R, TRIO R, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure:a randomized clinical trial[J]. Nutr Metab Cardiovasc Dis, 2014, 24(9): 1043-1049.
[DOI]
|
[36] |
RANGANATHAN N, RANGANATHAN P, FRIEDMAN EA, et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease[J]. Adv Ther, 2010, 27(9): 634-647.
[DOI]
|
[37] |
WANG IK, WU YY, YANG YF, et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients:a randomised, double-blind, placebo-controlled trial[J]. Benef Microbes, 2015, 6(4): 423-430.
[DOI]
|
[38] |
WILCK N, MATUS MG, KEARNEY SM, et al. Salt-responsive gut commensal modulates T (H)17 axis and disease[J]. Nature, 2017, 551(7682): 585-589.
[DOI]
|
[39] |
SUEYOSHI M, FUKUNAGA M, MEI M, et al. Effects of lactulose on renal function and gut microbiota in adenine-induced chronic kidney disease rats[J]. Clin Exp Nephrol, 2019, 23(7): 908-919.
[DOI]
|
[40] |
LI L, XIONG Q, ZHAO J, et al. Inulin-type fructan intervention restricts the increase in gut microbiome-generated indole in patients with peritoneal dialysis:a randomized crossover study[J]. Am J Clin Nutr, 2020, 111(5): 1087-1099.
[DOI]
|
[41] |
DEVLIN AS, MARCOBAL A, DODD D, et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota[J]. Cell Host Microbe, 2016, 20(6): 709-715.
[DOI]
|
[42] |
MEIJERS BK, DE PRETER V, VERBEKE K, et al. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin[J]. Nephrol Dial Transplant, 2010, 25(1): 219-224.
[DOI]
|
[43] |
Singh V, Yeoh BS, Chassaing B, et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer[J]. Cell, 2018, 175(3): 679-694.
[DOI]
|
[44] |
NAKABAYASHI I, NAKAMURA M, KAWAKAMI K, et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients:a preliminary study[J]. Nephrol Dial Transplant, 2011, 26(3): 1094-1098.
[DOI]
|
[45] |
ROSSI M, JOHNSON DW, MORRISON M, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY):a randomized trial[J]. Clin J Am Soc Nephrol, 2016, 11(2): 223-231.
[DOI]
|
[46] |
HAGHIGHAT N, MOHAMMADSHAHI M, SHAYAN-POUR S, et al. Effects of synbiotics and probiotics supplementation on serum levels of endotoxin, heat shock protein 70 antibodies and inflammatory markers in hemodialysis patients:a randomized double-blinded controlled trial[J]. Probiotics Antimicrob Proteins, 2020, 12(1): 144-151.
[DOI]
|
[47] |
RAMEZANI A, RAJ DS. The gut microbiome, kidney disease, and targeted interventions[J]. J Am Soc Nephrol:JASN, 2014, 25(4): 657-670.
[DOI]
|
[48] |
SCHULMAN G, BERL T, BECK GJ, et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD[J]. J Am Soc Nephrol, 2015, 26(7): 1732-1746.
[DOI]
|