慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是以不可逆的气流受限为特征的复杂、异质性疾病[1-2]。吸烟是COPD发病的重要因素之一[2]。COPD患者肺部持续存在的炎症会导致气道结构的破坏、重塑以及肺气肿的发生,从而加重疾病严重程度[3-4]。目前慢性炎症的机制尚不清楚,COPD患者缺少有效的针对性抗炎治疗。硬脂酰辅酶A去饱和酶1(stearoyl-CoA desaturases,SCD1)主要定位在内质网膜上,是催化体内诸如硬脂酸、棕榈酸等饱和脂肪酸(saturated fatty acids,SFA)生成油酸、棕榈油酸等单不饱和脂肪酸(monounsaturated fatty acids,MUFA)的关键酶[5-6]。饱和脂肪酸能与细胞表面的免疫受体结合,激活下游信号,促进炎症反应的发生,因此SCD1在调节细胞炎症反应中起到一定作用[5]。有关SCD1在COPD中的作用目前尚未见报道。本研究中,我们通过建立被动吸烟小鼠模型,观察并探讨SCD1在吸烟小鼠肺部炎症损伤中的作用。
材料和方法主要试剂与仪器 SCD1抑制剂CAY10566(美国MedChemExpress公司),用DMSO制备成50 mmol/L储存液,分装保存于-20 ℃,每次使用前用PBS稀释至工作浓度。Avertin(美国Sigma公司);BCA蛋白浓度测定试剂盒(上海碧云天生物技术有限公司);SCD1抗体(美国Cell Signaling Technology公司);RIPA裂解液、PMSF、ECL化学放光试剂盒(上海碧云天生物技术有限公司);鼠TNF-α、IL-6、IL-1β ELISA试剂盒(美国Thermo Fisher Scientific公司);电化学发光法试剂盒(美国Meso Scale Discovery公司);超敏多因子电化学发光分析仪(美国Meso Scale Discovery公司,型号QuickPlex SQ120);大前门香烟(焦油量10 mg,烟碱量0.8 mg,CO量12 mg);自制透明有机玻璃染毒箱(30 cm×30 cm×45 cm)。
实验动物 6~8周健康雄性C57BL/6小鼠购自上海南方模式公司,由复旦大学附属中山医院动物实验中心统一饲养。小鼠可自由饮水进食,温度保持在22~26 ℃,保证12 h/12 h的昼夜明暗交替。
动物造模 小鼠随机分为4组,分别为对照(CON)组、SCD1抑制剂给药组(CAY)、吸烟(Smoke)组以及吸烟同时给予SCD1抑制剂(Smoke+CAY)组,每组11~14只。CON组不作任何处理;CAY组每日定时以5 mg/kg剂量腹腔注射SCD1抑制剂CAY10566;Smoke组小鼠每日给予香烟烟熏约2 h,具体方法为每次点燃1支香烟插入自制染毒箱内,5~6 min后点燃第2支,如此往复,直至吸完20支香烟;Smoke+CAY组小鼠每日在烟熏基础上,定时给予5 mg/kg剂量腹腔注射CAY10566。造模共持续30天,每隔10天记录小鼠体重变化,最后一次烟熏结束24 h后取材。
动物取材 动物称重,按体重以20 mg/mL剂量腹腔注射Avertin麻醉,摘取眼球放血,分离获得血浆,保存于-20 ℃。暴露气管与胸腔,结扎右肺,用0.5 mL冰PBS对左肺进行单肺灌洗,重复抽吸3次,获得肺泡灌洗液(bronchoalveolar lavage fluid, BALF)。取一叶肺用甲醛固定,石蜡包埋,进行HE染色,显微镜下观察肺组织病理学改变,分析肺泡平均内衬间隔(mean linear intercept,MLI);其余肺组织保存于-80 ℃冰箱。取肝脏组织并进行称重,按照公式“肝脏重量/体重×100%”计算得到肝脏系数[7]。
肺泡灌洗液中蛋白浓度及细胞计数测定 新鲜获得的肺泡灌洗液经300×g离心5 min,分离上清至新离心管,利用BCA法测定肺泡灌洗液中的蛋白浓度,细胞沉淀用PBS重悬后计数。
细胞因子测定 按照ELISA试剂盒说明书,对小鼠肺泡灌洗液中TNF-α、IL-6、IL-1β的含量进行检测。利用MSD检测技术检测血浆中IL-4、IL-10、IL-13表达情况。
RT-qPCR 取适量肺组织,利用Trizol法提取组织中的总RNA,测定浓度后按照试剂盒说明书逆转录为cDNA,用SYBR-Green I Real-Time PCR Kit进行PCR反应。β-actin上游引物:5‘-CTACC-TCATGAAGATCCTGACC-3’,β-actin下游引物:5‘-CACAGCTTCTCTTTGATGTCAC-3’;SCD1上游引物:5’-AACATTCAATCCCGGGAGAAT-A-3’,SCD1下游引物:5’-GAAACTTTCTTCCG-GTCGTAAG-3’。
Western blot 用RIPA加PMSF裂解组织蛋白后,采用BCA法测定组织蛋白浓度。将蛋白样本加入上样孔进行电泳,转膜、封闭后,选择对应一抗在4 ℃孵育过夜,洗膜后室温下二抗孵育1 h,然后加入ECL化学发光液对条带进行曝光。
统计学方法 利用Graphpad Prism6软件对数据结果进行分析,结果用x±s表示,两独立样本比较采用t检验,多组间比较先采用单因素方差分析,再采用Bonferroni法进行两两比较。P < 0.05为差异有统计学意义。
结果吸烟小鼠肺内SCD1表达水平升高 比较CON组与Smoke组小鼠肺内SCD1 mRNA(图 1A)及蛋白质(图 1B)水平,发现吸烟造模后小鼠肺内SCD1表达升高。
抑制SCD1后小鼠体重及肝脏系数的变化情况 每隔7天对小鼠体重进行称重,并与第0天小鼠体重进行比较,得到体重变化率。CON组及Smoke组小鼠体重随天数增加而增长,而CAY组及Smoke+CAY组小鼠体重呈下降趋势,且CAY组小鼠体重下降趋势更为明显(图 2A)。经过30天造模后取材,与CON组相比,取材时CAY组及Smoke+CAY组小鼠的肝脏系数明显下降(P < 0.05,图 2B)。由此可见,给予SCD1抑制剂对小鼠体重及肝脏系数的影响效果明显。
抑制SCD1加重吸烟小鼠肺部炎症 对小鼠肺组织切片并行HE染色,观察到CON组(图 3A)及CAY组(图 3B)肺泡壁变薄,结构清晰、完整,气道周围极少炎症细胞浸润。Smoke组(图 3C)及Smoke+CAY组(图 3D)小鼠肺泡结构紊乱,肺泡间隔明显增厚,支气管纤毛结构破坏,气道周围炎症细胞浸润,且Smoke+CAY组肺泡腔破坏、扩大、融合更为明显。病理分析显示吸烟造模组肺泡MLI高于不吸烟组,并且给予SCD1抑制剂的Smoke+CAY组MLI明显高于Smoke组。
抑制SCD1后小鼠BALF蛋白浓度及细胞计数变化 测定蛋白浓度后发现,Smoke+CAY组肺泡灌洗液中的蛋白浓度较其余组升高(图 4A)。对BALF中的细胞进行统计发现,Smoke+CAY组的细胞计数最高,且与CON组比较,差异有统计学意义(P < 0.01,图 4B)。
抑制SCD1后小鼠细胞因子变化 检测小鼠BALF中TNF-α(图 5A)、IL-6(图 5B)、IL-1β(图 5C)水平发现,吸烟小鼠肺内TNF-α、IL-6、IL-1β水平均较未吸烟组升高,并且Smoke+CAY组小鼠IL-6水平较Smoke组明显升高,提示Smoke+CAY组小鼠肺内炎症水平更高。比较血浆中IL-4、IL-10、IL-13水平,IL-4在CAY组及Smoke+CAY组升高,而在Smoke组降低,但总体表达水平低,且差异无统计学意义;IL-10及IL-13水平在各组中差异不大。
讨论在本研究中,我们发现被动吸烟小鼠较正常对照小鼠肺内SCD1水平升高。为进一步研究SCD1水平升高在被动吸烟小鼠中起保护性作用还是损伤性作用,我们建立了被动吸烟加腹腔注射SCD1抑制剂的小鼠模型,比较病理及相关炎症指标。结果显示, Smoke+CAY组小鼠肺部损伤程度加重,炎症水平更高。
既往研究发现,敲除野生型小鼠SCD1基因后,小鼠能量消耗及脂肪酸氧化增加,体内脂肪沉积减少,能有效避免高脂或高碳水化合物饮食带来的体重增长,且对胰岛素具有更高的敏感性[8-9]。本研究中,腹腔注射SCD1抑制剂的C57BL/6小鼠体重减轻,与文献报道一致。
肺内细胞种类多且环境复杂,因此COPD发病机制复杂。COPD的肺部表现有慢性炎症、气道重塑以及肺气肿改变[1]。COPD疾病进展及病死率与患者体内炎症水平相关[10-11]。多种细胞因子参与COPD的炎症反应。在COPD患者痰中,TNF-α和IL-6等浓度升高,且COPD急性加重时,浓度更高[12]。我们通过检测吸烟小鼠BALF中相应炎症细胞因子来判断小鼠肺部炎症水平,发现Smoke+CAY组小鼠肺内炎症水平显著升高。IL-10是一个抗炎因子,研究发现IL-10在COPD患者血清中表达减少[13-14],而在本研究中IL-10改变不明显。IL-4和IL-13在介导变态反应性炎症中发挥一定作用,在哮喘患者中二者水平升高[12]。临床上部分COPD患者会同时表现出COPD和哮喘的症状[15]。我们检测了各组小鼠血浆中IL-4和IL-13水平,差异无统计学意义。目前COPD的治疗主要是减轻咳嗽、呼吸困难等临床症状,而缺乏促进COPD患者体内促炎与抗炎平衡的有效治疗,这促使我们继续深入研究COPD的炎症机制。
肥胖被认为是心血管疾病、代谢性疾病等的危险因素,并且会增加疾病的病死率。但也有研究发现,相较于低体重指数(body mass index,BMI)的COPD患者,超重及肥胖患者的生存率更高[16]。对二战华沙犹太区中因饥饿死去的人们进行尸检时发现很多人有肺气肿。严格控制大鼠的卡路里摄入,几周后大鼠肺部呈现肺气肿样改变[17]。这些则提示肺气肿的改变可能与脂质代谢的变化有关,脂质代谢在COPD的发生发展中扮演重要角色。
SCD1在调节体内脂质代谢平衡中发挥重要作用。既往SCD1在肿瘤中的研究较多。在肝癌、肾癌、肺癌、结直肠癌组织中,SCD1表达升高,起到维持肿瘤细胞增殖、减少凋亡、促进肿瘤细胞分化与恶变中的作用[18-19]。SCD1可以催化体内SFA生成MUFA,MUFA进而作为底物被用来合成三酰甘油、胆固醇酯及磷脂等[6]。因此,抑制体内SCD1会导致SFA比例相对增加,而MUFA比例相对减少。降低健康年轻人饮食中SFA/MUFA比例,可以减少外周血单个核细胞IL-1β、IL-18、IL-10和TNF-α的分泌以及循环中TNF-α的水平[20]。在非酒精性肝病的研究中发现,SFA会引起肝细胞内质网应激、线粒体功能障碍、氧化应激水平升高及肝细胞凋亡增加[21]。研究发现SFA与LPS类似,可通过TLR4激活炎症信号通路,促进NF-κB和COX2的表达[22]。故SFA与MUFA的比例变化会影响体内炎症水平。脂肪生成转录因子固醇调节元件结合蛋白-1c及核受体LXR可以诱导SCD1的表达[23]。吸烟者及COPD患者肺组织中LXR水平升高,且对COPD患者的肺泡巨噬细胞具有一定的抗炎作用[24]。这些均引发了人们研究SCD1在COPD中作用的兴趣。
本研究发现,被动吸烟小鼠肺内SCD1水平升高,抑制SCD1表达会加重吸烟小鼠肺部结构破坏,且相较单纯吸烟小鼠炎症水平更高,提示吸烟后肺内SCD1升高可能起到保护性抗炎作用。未来可进一步对SFA及MUFA水平进行检测,从而验证抑制SCD1加重炎症反应是否与脂质代谢改变有关。
[1] |
STARKEY MR, PLANK MW, CASOLARI P, et al. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis[J]. Eur Respir J, 2019, 54(1): 1800174.
[DOI]
|
[2] |
RABE KF, WATZ H. Chronic obstructive pulmonary disease[J]. Lancet, 2017, 389(10082): 1931-1940.
[DOI]
|
[3] |
PAUWELS NS, BRACKE KR, DUPONT LL, et al. Role of IL-1alpha and the Nlrp3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD[J]. Eur Respir J, 2011, 38(5): 1019-1028.
[DOI]
|
[4] |
BRIGHTLING C, GREENING N. Airway inflammation in COPD:progress to precision medicine[J]. Eur Respir J, 2019, 54(2): 1900651.
[DOI]
|
[5] |
LIU X, STRABLE MS, NTAMBI JM. Stearoyl CoA desaturase 1:role in cellular inflammation and stress[J]. Adv Nutr, 2011, 2(1): 15-22.
[DOI]
|
[6] |
AM AL, SYED DN, NTAMBI JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism[J]. Trends Endocrinol Metab, 2017, 28(12): 831-842.
[DOI]
|
[7] |
朱祥宇, 陈烨, 王学文, 等. 自发性基因突变SCD1-/-小鼠主要脏器参数、血液生理生化指标的观察[J]. 实验动物科学, 2018, 35(6): 22-27. [DOI]
|
[8] |
DZIEWULSKA A, DOBOSZ AM, DOBRZYN A, et al. SCD1 regulates the AMPK/SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle[J]. J Cell Physiol, 2020, 235(2): 1129-1140.
[DOI]
|
[9] |
STRABLE MS, NTAMBI JM. Genetic control of de novo lipogenesis:role in diet-induced obesity[J]. Crit Rev Biochem Mol Biol, 2010, 45(3): 199-214.
[DOI]
|
[10] |
CELLI BR, LOCANTORE N, YATES J, et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2012, 185(10): 1065-1072.
[DOI]
|
[11] |
KISTEMAKER LE, GOSENS R. Acetylcholine beyond bronchoconstriction:roles in inflammation and remodeling[J]. Trends Pharmacol Sci, 2015, 36(3): 164-171.
[DOI]
|
[12] |
BARNES PJ. Cellular and molecular mechanisms of asthma and COPD[J]. Clin Sci (Lond), 2017, 131(13): 1541-1558.
[DOI]
|
[13] |
JIANG S, SHAN F, ZHANG Y, et al. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 2483-2494.
[DOI]
|
[14] |
MANEECHOTESUWAN K, KASETSINSOMBAT K, WONGKAJORNSILP A, et al. Decreased indoleamine 2, 3-dioxygenase activity and IL-10/IL-17A ratio in patients with COPD[J]. Thorax, 2013, 68(4): 330-337.
[URI]
|
[15] |
BARNES PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease[J]. Nat Rev Immunol, 2018, 18(7): 454-466.
[DOI]
|
[16] |
MCDONALD VM, GIBSON PG, SCOTT HA, et al. Should we treat obesity in COPD? The effects of diet and resistance exercise training[J]. Respirology, 2016, 21(5): 875-882.
[DOI]
|
[17] |
CHEN H, LI Z, DONG L, et al. Lipid metabolism in chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 1009-1018.
[DOI]
|
[18] |
SHE K, FANG S, DU W, et al. SCD1 is required for EGFR-targeting cancer therapy of lung cancer via re-activation of EGFR/PI3K/AKT signals[J]. Cancer Cell Int, 2019, 19: 103.
[DOI]
|
[19] |
RAN H, ZHU Y, DENG R, et al. Stearoyl-CoA desaturase-1 promotes colorectal cancer metastasis in response to glucose by suppressing PTEN[J]. J Exp Clin Cancer Res, 2018, 37(1): 54.
[DOI]
|
[20] |
KIRWAN AM, LENIGHAN YM, O'REILLY ME, et al. Nutritional modulation of metabolic inflammation[J]. Biochem Soc Trans, 2017, 45(4): 979-985.
[URI]
|
[21] |
LI Y, LU Z, RU JH, et al. Saturated fatty acid combined with lipopolysaccharide stimulates a strong inflammatory response in hepatocytes in vivo and in vitro[J]. Am J Physiol Endocrinol Metab, 2018, 315(5): E745-E75.
[DOI]
|
[22] |
ROCHA DM, CALDAS AP, OLIVEIRA LL, et al. Saturated fatty acids trigger TLR4-mediated inflammatory response[J]. Atherosclerosis, 2016, 244: 211-215.
[DOI]
|
[23] |
SAMPATH H, NTAMBI JM. The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation[J]. Ann N Y Acad Sci, 2011, 1243: 47-53.
[DOI]
|
[24] |
HIGHAM A, LEA S, PLUMB J, et al. The role of the liver X receptor in chronic obstructive pulmonary disease[J]. Respir Res, 2013, 14: 106.
[DOI]
|