2. 上海影像医学研究所 上海 200032
2. Shanghai Institute of Medical Imaging, Shanghai 200032, China
表皮生长因子受体(epidermal growth factor receptor, EGFR)是一种细胞膜上的跨膜糖蛋白,其在肿瘤的增殖、分化、血管生成、葡萄糖代谢及抗凋亡过程中起重要调节作用[1-2]。非小细胞肺癌(non-small-cell lung cancer, NSCLC)患者发生EGFR突变时,表皮生长因子酪氨酸酶抑制剂(tyrosine kinase inhibitor, TKI)的应用较传统化疗显著提高了患者的无病进展时间,其中肺腺癌患者尤为受益[3-4],但是EGFR野生型的肺癌患者获益甚微[5]。目前对EGFR的表达状态进行检测已成为临床是否应用TKI重要的参照依据。受限于活检标本质量、活检技术及患者病情状态,部分患者EGFR表达状态的可靠结果较难从基因检测中获取,这给临床精准治疗带来挑战[6]。
18氟化脱氧葡萄糖[2-(fluorine-18)-fluoro-2-deoxy-D-glucose,18F-FDG]正电子发射断层显像/计算机断层显像(positron emission tomography/computed tomography,PET/CT)是一种基于葡萄糖代谢速率的改变,对疾病进行无创定性分析的全身性影像诊断工具[7]。目前关于肺腺癌FDG代谢改变与EGFR突变状态相关性的研究报道并不少见,但是由于纳入标准、种族、地区的不同,不同研究结果有较大差异。Ko等[8]剔除肿瘤直径小于1 cm的患者后,对132例未接受过治疗的肺腺癌患者进行回顾分析,认为当肺内原发病灶的SUVmax > 6时肺腺癌患者更易出现EGFR突变(P=0.002)。Lv等[9]将SUVmax值为7作为判断EGFR突变与否的临界值,认为葡萄糖代谢活性越低越倾向于EGFR突变。本研究回顾分析了248例肺腺癌患者临床资料,旨在探讨SUVmax与EGFR突变状态的关系,以明确18F-FDG PET/CT无创预测肺腺癌患者EGFR突变状态的价值。
资料和方法一般资料 回顾分析2011年1月至2016年3月复旦大学附属中山医院18F-FDG PET/CT显像资料。病例纳入标准:(1)经病理证实肺部病灶为腺癌,并行EGFR基因18~21号外显子突变检测;(2)一般临床资料完整;(3)行18F-FDG PET/CT显像前未接受放化疗、靶向治疗、免疫治疗或中药治疗等;(4)非磨玻璃病灶。共248例患者符合上述标准,收集患者的年龄、吸烟状态、肿瘤直径、肿瘤位置、病灶的SUVmax、病理分级、转移状态及临床分期等信息。吸烟状态可分为3类:(1)从不吸烟;(2)吸烟;(3)既往吸烟,但已戒烟超过6个月。根据第八版AJCC标准[10]对病灶进行临床分期,将Ⅰ、Ⅱ期病灶归为一类,Ⅲ、Ⅳ期为单独两个分类。病灶的病理分级分为轻中度分化及差分化两类进行分析。
18F-FDG PET/CT显像方法及图像分析 患者准备:(1)注射18F-FDG前至少禁食6 h,且指尖血糖不超过10 mmol/L;(2)按照5.18 MBq/Kg静脉注射18F-FDG;(3)药物注射后40~60 min进行显像。PET/CT显像:(1)将扫面视野设为颅顶至股骨上段水平;(2)CT采集参数为:管电压140 kV,管电流200 mAs;0.5 s/转,层厚6.5 mm,螺距为0.516,矩阵512×512;(2)PET图像按照2~3分钟/床位,每人5~7个床位进行采集;(3)基于CT进行衰减校正,采用有序子集最大期望算法(ordered subset expectation maximization,OSEM)滤波后图像重建及PET与CT图像融合。
图像分析时感兴趣区(region of interest,ROI)均定义为肿瘤的原发部位。在PET/CT融合图像上进行SUVmax测量,计算公式为:
$ \text{SUV}=\frac{组织放射性活度}{\left( 满针放射性活度-空针放射性活度 \right)\times 体重} $ |
SUVmax指病灶(即ROI)摄取18F-FDG的最大值。单位:放射性活度(MBq/mL),体重(kg)。
统计学方法 应用SPSS 22.0统计分析软件,计量资料以x±s表示,变量间比较采用配对t检验或单因素方差分析,变量间两两比较采用Bonferroni进行校正,变量间相关性分析采用Pearson法。计数资料用百分数或率(%)表示,变量间比较采用四格表或χ2检验。采用单因素相关分析及多元线性回归分析的方法分析EGFR突变状态的影响因素及独立影响因素,及其影响程度。双侧检验P < 0.05为差异有统计学意义。
结果一般资料 248位肺腺癌患者中男性128例,女性120例;EGFR基因突变组(EGFR+)154例,野生型组(WT/EGFR-)94例。女性患者较男性患者更易出现EGFR突变(F=6.17,P=0.01)。67.4%(124/184)的不吸烟患者存在EGFR基因突变,这一比例高于不吸烟患者和既往吸烟患者(F=8.56,P=0.01)。EGFR基因突变患者更易出现淋巴结、胸膜或远处转移(t=2.04,P=0.04)。两组间病灶SUVmax值的差异有统计学意义,SUVmax低的患者EGFR突变可能性更高(t=2.38,P=0.02)。年龄、肿瘤最大直径、肿瘤发生部位、临床分期、病理分级均与EGFR表达状态无显著相关(表 1)。
[x±s or n(%)] | |||||||||||||||||||||||||||||
Characteristics | EGFR+ (n=154) |
WT/EGFR- (n=94) |
P value | ||||||||||||||||||||||||||
Gender [n(%)] | 0.02 | ||||||||||||||||||||||||||||
Male | 70 (45.45) | 58 (61.70) | |||||||||||||||||||||||||||
Female | 84 (54.55) | 36 (38.30) | |||||||||||||||||||||||||||
Age (y) | 61.08±9.38 | 59.90±10.16 | 0.36 | ||||||||||||||||||||||||||
Smoking status | 0.01 | ||||||||||||||||||||||||||||
Never smoker | 124 (80.52) | 60 (63.83) | |||||||||||||||||||||||||||
Current smoker | 24 (15.58) | 28 (29.79) | |||||||||||||||||||||||||||
Ever smoker | 6 (3.90) | 6 (6.38) | |||||||||||||||||||||||||||
Stage (AJCC) | 0.07 | ||||||||||||||||||||||||||||
Ⅰ/Ⅱ | 59 (38.31) | 30 (31.91) | |||||||||||||||||||||||||||
Ⅲ | 46 (29.87) | 23 (24.47) | |||||||||||||||||||||||||||
Ⅳ | 49 (31.82) | 41 (43.62) | |||||||||||||||||||||||||||
Grade | 0.09 | ||||||||||||||||||||||||||||
Well/Moderate | 74 (48.05) | 34 (36.17) | |||||||||||||||||||||||||||
Poor | 80 (51.95) | 60 (63.83) | |||||||||||||||||||||||||||
Metastasis | 78 (50.65) | 34 (36.17) | 0.04 | ||||||||||||||||||||||||||
Location | 0.38 | ||||||||||||||||||||||||||||
Left lobe | 67 | 34 | |||||||||||||||||||||||||||
Right lobe | 87 | 60 | |||||||||||||||||||||||||||
SUVmax | 8.32±5.18 | 10.06±6.17 | 0.02 |
影响EGFR表达状态相关指标的单因素及多因素回归分析 单因素Logistic回归分析结果表明性别、吸烟状态、转移状态及SUVmax均与EGFR基因表达状态相关。女性(OR=0.15,95%CI:0.31~0.87,P=0.01)和吸烟(OR=2.07,95%CI:0.64~6.68,P=0.02)是EGFR突变的危险因素。SUVmax < 8.32±5.18时更易出现EGFR突变(OR=0.95,95%CI:0.90~0.99,P=0.02)。发生EGFR基因突变的患者更易出现淋巴结、胸膜或远处转移(78 vs.34, t=2.04, P=0.04)。EGFR突变状态不受患者年龄、肿瘤直径及肿瘤位置的影响。校正性别、年龄、吸烟状态、肿瘤直径、肿瘤位置、转移状态及SUVmax等多个协变量后,多元Logistic回归分析结果显示(表 2):SUVmax为预测EGFR突变状态的独立危险因素,病灶SUVmax值越低越易发生EGFR突变(OR=0.94,95%CI:0.89~0.99,P=0.02)。
Characteristics | EGFR+ | Univariate analyses | Multivariate analyses | |||||
OR | 95%CI | P value | OR | 95%CI | P value | |||
Gender | 120 | 0.152 | 0.307-0.873 | 0.013 | 0.648 | 0.329-1.277 | 0.210 | |
Age (y) | 61.08±9.38 | 1.013 | 0.986-1.041 | 0.354 | 1.022 | 0.994-1.052 | 0.128 | |
Smoking status | ||||||||
Never smoker | 124 | 2.067 | 0.640v6.678 | 0.016 | 1.786 | 0.149-6.488 | ||
Current smoker | 30 | 0.857 | 0.244-3.011 | 0.855 | 0.232-3.144 | |||
Diameter (mm) | 32.24±17.09 | 0.996 | 0.981-1.010 | 0.556 | 1.014 | 0.995-1.032 | ||
Location | 0.388 | 0.197 | ||||||
Left lobe | 67 | 1.170 | 0.500-2.740 | 1.149 | 0.466-2.832 | |||
Right lobe | 87 | 1.123 | 0.445-2.839 | 0.961 | 0.358-2.583 | |||
SUVmax | 8.32±5.18 | 0.947 | 0.904-0.992 | 0.020 | 0.938 | 0.889-0.990 | 0.021 |
SUVmax与EGFR突变类型的关系 两独立样本t检验结果显示(图 1),EGFR突变组SUVmax明显低于野生型组(8.32±5.18 vs. 10.06±6.17),差异有统计学意义(t=2.38,P=0.02)。当SUVmax的cut-off值为3.05时,SUVmax预测EGFR突变的敏感度为90.4%,特异度为82.5%。单因素方差分析显示:EGFR 19号外显子突变、21号外显子突变及EGFR野生型的组间SUVmax差异有统计学意义(F=3.25,P=0.04)。进一步采用Tukey法进行组间两两比较发现,EGFR突变患者中仅19号外显子突变患者的SUVmax低于野生型患者,差异有统计学意义(7.90±4.80 vs.10.06±6.17,F=3.52,P=0.04);21号外显子突变患者的SUVmax与野生型患者相比, 差异无统计学意义(8.71±5.45 vs.10.06±6.17,F=2.26,P=0.249)。两种不同类型突变患者的SUVmax差异无统计学意义(7.90±4.80 vs.8.71±5.45,F=2.29,P=0.634)。
讨论临床实践中,EGFR突变状态是给予患者靶向治疗的重要参考依据。受限于活检技术及活检标本质量,部分患者较难获取可靠的检测结果。一项基于592例NSCLC患者的回顾性分析研究表明,18F-FDG PET/CT不仅可重新指导NSCLC患者的临床分期和治疗方案的制定,而且可初步预测患者的无病进展时间及总生存时间[11]。在目前的临床实践中,18F-FDG PET/CT常作为NSCLC患者能否接受局部治疗的重要参考依据之一。本研究发现EGFR突变状态与肺腺癌细胞摄取葡萄糖的程度具有明显的相关性,EGFR突变患者的SUVmax显著低于EGFR野生型患者。
研究发现18F-FDG的摄取程度与肿瘤细胞膜上葡萄糖转运体(glucose transporter-1,GLUT-1)的表达量呈正相关,且部分假阴性的病灶中GLUT-1表达量极低[12-15]。GLUT-1与mTOR是P13K/Akt通路的下游信号,该通路在调节Warburg效应中发挥重要作用。当P13K/Akt通路被激活时,不仅可提高肿瘤细胞的活性,还能促进肿瘤细胞增殖、血管生成及葡糖糖代谢等恶性生物学行为[16]。Sasaki等[17]研究发现,GLUT-1过表达与NSCLC患者的性别、吸烟状态、病理分型及EGFR和Kras基因突变相关。其中,女性、非吸烟、腺癌、EGFR突变、Kras突变患者的GLUT-1表达量相对较低,差异有统计学意义。与EGFR野生型患者相比,EGFR突变患者的GLUT-1表达量相对较低,因此SUVmax较低,这与本研究结果一致。
Carlos等[18]回顾分析了102例临床分期为Ⅲ~Ⅳ期的晚期NSCLC患者的18F-FDG PET/CT图像,认为SUVmax与EGFR突变状态无相关性。该研究中EGFR突变患者仅22例,其中鳞状细胞癌、支气管肺泡癌及未分类NSCLC各1例。相关研究认为鳞状细胞癌细胞的GLUT-1表达量明显高于腺癌细胞,即理论上鳞癌细胞较腺癌细胞更积极地摄取18F-FDG,在临床实践中鳞癌病灶往往具有较高的SUVmax。在样本量较小的情况下,纳入鳞癌患者可能对结果影响较大,以至于部分研究认为SUVmax与EGFR突变状态无相关性,或者EGFR突变患者具有较高的SUVmax[19-21]。本研究在去除非腺癌患者GLUT-1表达差异的影响后进行回顾性分析。与本研究结果类似的是,Suárez等[22]回顾分析了112例肺腺癌患者中SUVmax与EGFR突变及预后的相关性,认为EGFR突变患者SUVmax低于野生型患者,在患者预后方面SUVmax也有一定预测价值,即低水平SUVmax患者具有更长的生存时间和无疾病进展时间。本研究排除病灶表现为磨玻璃结节(ground-glass opacity, GGO)的原因是:肺腺癌病灶早期多数表现为GGO或混合型GGO;GGO病灶摄取葡萄糖的能力较低,往往表现为假阴性,18F-FDG PET/CT对GGO的诊断价值有限,临床实践中常规不推荐18F-FDG PET/CT用于GGO的诊断[23-24]。本研究在剔除鳞癌及GGO对SUVmax的干扰后进行SUVmax与EGFR突变状态相关性分析,因此研究结果更加可靠。
本研究将SUVmax的cut-off值设定为3.05时,预测EGFR突变的敏感度为90.4%,特异度为82.5%。SUVmax作为一个半定量指标,影响因素较多,如患者血糖水平、ROI的勾画、部分容积效应、后处理技术等。按照标准流程测量SUVmax值在EGFR突变状态的预测中同样至关重要。另外,EGFR突变状态位点不同,驱动下游的靶通路及导致的生理学改变也有所不同。Exon 19位点缺失和Exon 21的L858R位点置换突变在EGFR突变中常见[25]。既往研究认为,Exon 19位点缺失患者对靶向EGFR药物的敏感性更高,同时该患者也可能获得更长的无疾病进展时间[26]。本研究将这两种不同类型突变患者与野生型患者的SUVmax分别进行两两比较,结果发现Exon 19位点缺失患者的SUVmax低于Exon 21位点突变及野生型患者。Choi等[27]也认为Exon 21突变患者的SUVmax明显高于Exon 19突变(11.6 vs. 8.2)。但Lee等[28]将所有病例类型的NSCLC患者纳入研究,认为EGFR突变状态与SUVmax无关,且两种基因位点突变患者的SUVmax无明显差异。两不同突变点之间的糖代谢改变差异尚需进一步探讨。
本研究存在以下局限性:(1)本研究虽然样本量较大,但在种族上具有单一性,既往研究认为亚洲人中EGFR突变率最高(高达47%)[29];(2)本研究为回顾性分析,结果的可靠性尚需前瞻性研究进行验证;(4)由于部分肺腺癌患者中存在2个或以上基因的突变,该结果对SUVmax的影响需进一步细化。
综上所述,18F-FDG PET/CT半定量参数SUVmax可作为肺腺癌患者EGFR突变状态的独立预测因子,在活检标本质量及活检技术不足的情况下,可根据SUVmax对EGFR突变状态进行无创性评估。
[1] |
SCALTRITI M, BASELGA J. The epidermal growth factor receptor pathway:a model for targeted therapy[J]. Clin Cancer Res, 2006, 12(18): 5268-5272.
[URI]
|
[2] |
MAKINOSHIMA H, TAKITA M, MATSUMOTO S, et al. Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma[J]. J Biol Chem, 2014, 289(30): 20812-20823.
[URI]
|
[3] |
MOK TS, WU YL, THONGPRSERT S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma[J]. N Engl J Med, 2009, 361(10): 947-957.
[URI]
|
[4] |
PAO W, MILLER V, ZAKOWSKI M, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib[J]. Proc Natl Acad Sci U S A, 2004, 101(36): 13306-13311.
[URI]
|
[5] |
SEQUIST LV, YANG JC, YAMAMOTO N, et al. Phase Ⅲ study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations[J]. J Clin Oncol, 2013, 31(27): 3327-3334.
[PubMed]
|
[6] |
LOZANO MD, ZULUETA JJ, ECHEVESTE JI, et al. Assessment of epidermal growth factor receptor and Kras mutation status in cytological stained smears of non-small cell lung cancer patients:correlation with clinical outcomes[J]. Oncologist, 2011, 16(6): 877-875.
[URI]
|
[7] |
HIGASHI K, UEDA Y, ARISAKA Y, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer[J]. J Nucl Med, 2002, 43(1): 39-45.
[URI]
|
[8] |
KO KH, HSU HH, HUANG TW, et al. Value of F-18-FDG uptake on PET/CT and CEA level to predict epidermal growth factor receptor mutations in pulmonary adenocarcinoma[J]. Eur J Nucl Med Mol Imaging, 2014, 41(10): 1889-1897.
[URI]
|
[9] |
LV ZL, FAN JS, XU JJ, et al. Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK espression in patients with non-small cell lung cancer:a retrospective analysis of 849 Chinese patients[J]. Eur J Nucl Med Mol Imaging, 2018, 45(5): 735-750.
|
[10] |
张用, 毕建平, 皮国良, 等. 国际肺癌研究协会第八版国际肺癌TNM分期修订稿解读[J]. 肿瘤防治研究, 2016, 43(4): 313-318. [URI]
|
[11] |
TAKEUCHI S, KHIEWVAN J, BINNS D, et al. Impact of initial PET/CT staging in terms of clinical stage, management plan, and prognosis in 592 patients with non-small cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2014, 41(5): 906-914.
[URI]
|
[12] |
HIGASHI K, UEDA Y, SAKURAI A, et al. Correlation of Glut-1 glucose transporter expression with[J]. Eur J Nucl Med, 2000, 27(12): 1778-1785.
[URI]
|
[13] |
CHOI WH, YOO LER, O JH, et al. Is the Glut expression related to FDG uptake in PET/CT of non-small cell lung cancer patients?[J]. Technol Health Care, 2015, 23(Suppl 2): S311-S318.
[URI]
|
[14] |
LEE J, KIM JO, JUNG CK, et al. Metabolic activity on[18f]-fluorodeoxyglucose-positron emission tomography/computed tomography and glucose transporter-1 expression might predict clinical outcomes in patients with limited disease small-cell lung cancer who receive concurrent chemoradiation[J]. Clin Lung Cancer, 2014, 15(2): e13-e21.
|
[15] |
KAIRA KM, SERIZAWA M, KOH Y, et al. Biological significance of 18F-FDG uptake on PET in patients with non-small cell lung cancer[J]. Lung Cancer, 2014, 83(2): 197-204.
[URI]
|
[16] |
ELSTROM RL, BAUER DE, BUZZAI M, et al. Akt stimulates aerobic glycolysis in cancer cells[J]. Cancer Res, 2014, 64(11): 3892-3899.
[URI]
|
[17] |
SASAKI H, SHITARA M, YOKOTA K, et al. Overexpression of GLUT-1 correlates with Kras mutations in lung carcinomas[J]. Mol Med Rep, 2012, 5(3): 599-602.
[URI]
|
[18] |
CARLOS C, MARIA GV, MARIA DL, et al. Role of 18F-FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2014, 41(11): 2058-2065.
[URI]
|
[19] |
SUZAWA N, ITO M, QIAO S, et al. Assessment of factors influencing FDG uptake in non-small cell lung cancer on PET/CT by investigating histological differences in expression of glucose transporters 1 and 3 and tumour size[J]. Lung Cancer, 2011, 72(2): 191-198.
[URI]
|
[20] |
WANG Y, MA S, DONG M, et al. Evaluation of the factors affecting the maximum standardized uptake value of metastatic lymph nodes in different histological types of non-small cell lung cancer on PET/CT[J]. BMC Pulm Med, 2015, 15(2015): 20-26.
[URI]
|
[21] |
ZHANG J, CHEN L, CHEN Y, et al. Tumor vascularity and glucose metabolism correlated in adenocarcinoma, but not in squamous cell carcinoma of the lung[J]. PLoS One, 2014, 9(3): e91649.
[URI]
|
[22] |
SU REZ PM, BELDA SJ, TAUS A, et al. FDG PET-CT SUVmax and IASLC/ATS/ERS histologic classification:a new profile of lung adenocarcinoma with prognostic value[J]. Am J Nucl Med Mol Imaging, 2018, 8(2): 100-109.
[URI]
|
[23] |
WU HB, WANG L, WANG QS, et al. Adenocarcinoma with BAC features presented as the nonsolid nodule is prone to be false-negative on 18F-FDG PET/CT[J]. Biomed Res Int, 2015, 2015: 243681-243688.
[URI]
|
[24] |
KIM TJ, PARK CM, GOO JM, et al. Is there a role for FDG PET in the management of lung cancer manifesting predominantly as ground-glass opacity?[J]. AJR Am J Roentgenol, 2012, 198(1): 83-88.
[URI]
|
[25] |
KUMAR A, PETRI ET, HALMOS B, et al. Structure and clinical relevance of the epidermal growth factor receptor in human cancer[J]. J Clin Oncol, 2008, 26(10): 1742-1751.
[URI]
|
[26] |
WON YW, HAN JY, LEE GK, et al. Comparison of clinical outcome of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations[J]. J Clin Pathol, 2011, 64(11): 947-952.
[URI]
|
[27] |
CHOI YJ, CHO BC, JEONG YH, et al. Correlation between 18F-flurodeoxyglucose uptake and epidermal growth factor mutations in advanced lung cancer[J]. Nucl Med Mol Imaging, 2012, 46(3): 169-175.
[URI]
|
[28] |
LEE SM, BAE SK, JUNG SJ, et al. FDG uptake in non-small cell lung cancer is not an independent predictor of EGFR or KRAS mutation status:a retrospective analysis of 206 patients[J]. Clin Nucl Med, 2015, 40(12): 950-958.
[URI]
|
[29] |
MIDHA A, DEARDEN S, MCCORMACK R. EGFR mutation incidence in non-samll-cell lung cancer of adenocarcinoma histology:a systematic review and global map by ethnicity (mutMapⅡ)[J]. Am J Cancer Res, 2015, 5(9): 2893-2911.
|