文章快速检索     高级检索
   复旦学报(医学版)  2020, Vol. 47 Issue (1): 117-121      DOI: 10.3969/j.issn.1672-8467.2020.01.020
0
Contents            PDF            Abstract             Full text             Fig/Tab
NLRP3炎症小体在糖尿病心肌病(DCM)中作用机制的研究进展
赵奕凯  (综述), 吴帮卫 , 李剑  (审校)     
复旦大学附属华山医院心内科 上海 200040
摘要:糖尿病心肌病(diabetic cardiomyopathy,DCM)是由糖尿病引起的,以心肌结构异常和功能下降为特征,独立于冠心病、高血压、瓣膜病变等原因的一种特异性心肌病。核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体是近几年发现的一种参与DCM的蛋白复合体,它可以诱导pro-caspase-1自我剪切为活化的caspase-1,进而活化IL-1β、IL-18,激活下游的一系列炎症反应,促进心肌纤维化,同时触发特殊的心肌细胞程序性死亡方式——细胞焦亡(pyroptosis)。临床多种药物可以干预NLRP3炎症小体延缓DCM病理生理过程。本文就近年来对NLRP3炎症小体在糖尿病心肌病中的形成、激活和作用的信号通路及相关药物的负调控研究进行综述。
关键词NLRP3炎症小体    糖尿病心肌病(DCM)    炎症反应    心肌纤维化    
Research progress on the mechanism of NLRP3 inflammasome in diabetic cardiomyopathy(DCM)
ZHAO Yi-kai , WU Bang-wei , LI Jian     
Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
Abstract: Diabetic cardiomyopathy (DCM) is a specific cardiomyopathy caused by diabetes mellitus and characterized by myocardial structural abnormalities and dysfunction, independent of coronary heart disease, hypertension, and valvular disease. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome has emerged as a newly discovered protein complex involved in DCM in recent years.The pathological function of NLRP3 inflammatory has been confirmed to induce pro-caspase-1 self-cutting into activated caspase-1, which can activate IL-1β and IL-18 and then promote a series of downstream inflammatory responses and myocardial fibrosis.Meanwhile, NLPR3 inflammasome can trigger a specific pattern of programmed cell death, pyroptosis.NLRP3 inflammasome can also be interfered by a variety of clinical drugs to delay the pathophysiological process of diabetic cardiomyopathy. This review summarizes the recent research progress in the formation, activation and functions of NLRP3 inflammasome in DCM, including the related drugs targeting NLRP3 pathways.
Key words: NLRP3 inflammasome    diabetic cardiomyopathy (DCM)    inflammation    myocardial fibrosis    

自1972年Rubler等首次报道糖尿病心肌病(diabetic cardiomyopathy,DCM)以来,众多研究表明DCM是一种独立于高血压、冠心病的特异性心肌病,其发病率高、危害性大[1]。DCM的病理生理机制尚不清楚,代谢紊乱、氧化应激、微循环障碍、心肌纤维化等先后被证实参与了其病理生理过程,其中炎症反应起到关键作用[2]。研究发现,在临床上糖尿病合并心衰患者以及DCM动物模型中,肿瘤坏死因子α(tumor necrosis factor α, TNF-α)、白介素-6(interleukin 6,IL-6)、IL-1β、IL-37、核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体、单核细胞趋化蛋白-1(monocyte chemotactic protein 1,MCP-1)、血管内皮黏附分子-1(vascular cell adhesion molecule 1,VCAM-1)、细胞内黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)、诱导型一氧化氮合成酶(inducible nitric oxide synthase,iNOS)等多种炎性介质表达升高[3]。早期的炎症反应是应对高糖损害的保护性反应,若高糖损害持续存在,慢性化的炎症反应最终将导致心肌细胞肥厚、凋亡以及心肌组织纤维化[3]

炎症小体是一组参与多种疾病炎症、免疫和代谢异常进程的蛋白复合体,可识别多种微生物、应激和损伤信号,激活caspase-1,诱发一系列前炎症因子的活化和一种特殊的细胞程序性死亡——细胞焦亡[4]。常见的炎症小体包括NLRP1、NLRP2、NLRP3、NLRP6、NLRP7、NLRC4(NOD-like receptor family CARD domain containing 4)和AIM2(absent in melanoma 2),其中最为重要的是NLRP3炎症小体[5]。既往许多研究已发现NLRP3炎症小体及其组分、IL-1β和IL-18等炎症因子在DCM动物心肌组织中明显升高[6]。NLRP3基因沉默后相关炎症因子表达明显降低,心脏炎症、细胞凋亡、心肌纤维化和超声结构的异常明显改善[6]。这些研究表明NLRP3炎症小体在DCM的发生中发挥关键作用。本文主要就近年来对NLRP3炎症小体在DCM中的作用机制研究进行综述。

NLRP3炎症小体的分子结构  NLRP3是模式识别受体中NLRs(nucleotide-binding and oligomerization domain-/NOD-like receptors)家族的一员,由1 016个氨基酸组成,包括NACHT结构域[NAIP (NLR family, apoptosis inhibitory protein)、CIITA (class Ⅱ, major histocompatibility complex, transactivator)、HET-E (plant het gene product involved in vegetative incompatibility)、TP-1 (telomerase-associated protein 1)]、亮氨酸重复序列(C-terminal leucine-rich repeats,LRRs)及PYD结构域(pyrin domain) 3个部分[6]。NLRP3的产生依赖于NF-κB通路,这一通路同时也是DCM其他多条炎症信号通路必需的关键环节[3]。当细胞接受相关刺激信号后,抑制NF-κB的蛋白激酶被降解,NF-κB转移至细胞核,上调NLRP3、pro-IL1β、pro-IL-18等基因表达。表达的NLRP3出细胞核,受到细胞内特定的信号刺激后发生寡聚化,其PYD结构域与含CARD(C-terminal caspase recruitment domain)结构域的凋亡相关颗粒样蛋白(apoptosis-associated speck-like protein containing CARD, ASC)的PYD结构域结合,ASC的CARD结构域再和含半胱氨酸的天冬氨酸蛋白水解酶1前体(pro-cysteinyl aspartate specific proteinase-1, pro-caspase-1)的CARD结构域结合,从而使NLRP3、ASC和pro-caspase-1三者构成了完整的NLRP3炎症小体而激活[7]

NLRP3炎症小体在DCM中介导的炎症信号通路  IL-1β、IL-18炎症因子的表达以及活化需要两大步骤:调控NLRP3和pro-IL-1β、pro-IL-18表达的起始步骤,以及装配NLRP3炎症小体,激活caspase-1后剪切pro-IL-1β、pro-IL-18至活性形式的激活步骤(图 1)。

图 1 NLRP3炎症小体的起始步骤与激活步骤 Fig 1 The priming step and activation step of NLRP3 inflammasome

起始步骤  NLRP3表达依赖于NF-κB通路,这也是多条炎症信号介导心肌组织炎症反应的共同通路。但NLRP3产生的起始步骤尚未研究清楚,已知高糖和高脂介导的活性氧(reactive oxygen species,ROS)在这一过程中占主要作用,ROS可以由PKC-和Rac1依赖的NADPH氧化酶产生,此外线粒体的功能异常、RAAS系统激活等多种途径也能产生ROS,激活NF-κB信号通路[8]。PAMPs、DAMPs识别PRRs后也可激活NF-κB,导致NLRP3表达的升高[9]

激活步骤  NLRP3产生后在细胞质内保持未活化状态,需经相关刺激后发生寡聚化[8],其PYD结构域与ASC的PYD结构域结合,ASC的CARD结构域再和pro-caspase-1的CARD结构域结合,才能构成完整NLRP3炎症小体。许多病原体或宿主来源的配体都能激活NLRP3炎症小体,包括病原相关分子模式、细菌成孔毒素、疟原虫色素、二氧化硅、石棉、紫外线和ATP等[7]。DCM相关的激活途径主要有ROS相关途径,P2X7受体相关途径,溶酶体相关途径以及线粒体功能异常等途径。

ROS相关激活途径  长期高糖和高脂刺激心肌细胞内ROS过度产生,ROS促使细胞内DNA、蛋白等多种成分发生氧化修饰,同时还介导NLRP3炎症小体的聚集和活化[6]。有研究发现ROS能从硫氧还蛋白相互作用蛋白-硫氧还蛋白(thioredoxin interacting/inhibiting protein- thioredoxin,TXNIP-TXN)复合物中解离出TXNIP,游离的TXNIP能调节NLRP3炎症小体的形成和激活[10-11];瑞舒伐他汀可以通过TXNIP途径抑制NLRP3炎症小体的激活[12]。此外,ROS还可以打开细胞膜的钙离子通道TRPM2导致钙离子内流,激活NLRP3炎症小体[8]

P2X7受体相关途径  P2X7受体是心肌成纤维细胞膜上的以ATP为配体的离子门控通道,细胞外的ATP刺激该离子通道开放,引发K+外流和泛连接蛋白(pannexin-1)膜通道的形成,胞外各种NLRP3激动剂便能进入胞内, 促进NLRP3炎症小体的聚集和活化[11]。外源性的H3松弛素能够明显减弱P2X7受体介导的NLRP3炎症小体激活,抑制高糖环境下心脏成纤维细胞胶原合成[13]。使用ROS激动剂H2O2和ROS抑制剂NAC都不会影响P2X7受体的表达,提示P2X7受体相关途径可能是独立于ROS途径之外的一条激活通路[13]

溶酶体相关途径  NLRP3炎症小体的激活存在于痛风、硅肺、动脉粥样硬化、阿尔兹海默症和DCM等多种疾病中,溶酶体的损伤是他们共有的激活通路[14]。细胞外尿酸、结晶体或特殊颗粒被内吞入细胞,导致溶酶体膜透化,溶酶体释放的内容物可促进NLRP3炎症小体的聚集和活化[15]

线粒体功能异常途径  高糖处理H9C2细胞,可诱导线粒体氧化应激并释放细胞色素C,后者直接作用于NLRP3,促进炎症小体的形成;用传统中药七叶胆甙可以抑制ROS的产生,以及NLPR3的激活;进一步用细胞色素A(细胞色素C的抑制物)也能明显抑制NLRP3炎症小体活化[9]。线粒体膜稳定性被破坏以后还能释放ROS、线粒体DNA、心磷脂进一步激活NLRP3炎症小体[16]

其他激活方式  在巨噬细胞中,胆固醇结晶可通过诱导溶酶体损伤的途径激活NLRP3炎症小体[17]。氧化的低密度脂蛋白胆固醇与细胞膜上的CD36相互作用,能促进细胞内可溶物向结晶体的转化,导致溶酶体损伤和破裂[18]。ATP、尼日利亚菌素、刺尾鱼毒素等则可以通过P2X7受体途径,促进ROS生产、钾离子外流激活NLRP3炎症小体[19]。低钾也是参与NLRP3炎症小体激活的可能因素,当细胞内钾离子浓度低于90 mmol/L时,NLRP3炎症小体会自动生成,而高钾时这一过程被抑制。二氧化硅、铝盐等同样也可激活NLRP3炎症小体[7]。然而,这些途径大部分存在于巨噬细胞、血管内皮细胞中,而心肌细胞、心肌成纤维细胞内是否存在这些激活途径还有待进一步验证。

NLRP3炎症小体在DCM发生发展中介导的效应

炎症反应  NLRP3炎症小体形成后,募集并诱导pro-caspase-1自我剪切为活化的caspase-1。活化的caspase-1将pro-IL-1β、pro-IL-18剪切为具有活性的IL-1β、IL-18。IL-1β是一种重要的促炎因子,通过激活IL-1R下游信号通路,诱发一系列炎症反应。用NLRP3-miRNA干预后,心肌组织中IL-1β、IL-18的水平明显降低[6]

细胞焦亡  caspase-1在剪切pro-IL-1β、pro-IL-18的同时,还能联合其他相关的caspase(如caspase-11),触发gasdermin D(GSDMD)的N端寡聚化,使细胞质膜孔道形成,诱发特殊细胞程序性死亡——细胞焦亡[4]。细胞焦亡是依赖于caspase-1的死亡方式,细胞膜孔道形成和细胞核DNA断裂是细胞焦亡启动后两个明显的特征,细胞膜孔道形成有利于细胞外基质的内渗和细胞内炎症因子的外溢,最终导致细胞肿胀破裂和局部的炎症反应。高糖刺激的大鼠心肌细胞中可见caspase-1高表达,心肌细胞出现细胞器肿胀,细胞核DNA断裂等的细胞焦亡特征性改变,用NLRP3基因沉默技术可以有效抑制caspase-1在体内和体外水平的活化,减轻细胞器肿胀和DNA损伤,抑制细胞焦亡[6]

心肌纤维化  NLRP3炎症小体激活也参与心肌纤维化病理生理过程。在DCM的病理情况下,这条信号通路被激活,心肌成纤维细胞会在IL-18、IL-1β等炎症产物的长期刺激下合成大量的Ⅰ型胶原和Ⅲ型胶原,导致过度的胶原堆积、心肌组织纤维化和心脏重构[20],而黄芪夹苷便可通过抑制NLRP3炎症小体的激活途径,减少胶原的合成达到抗心肌纤维化的目的[21]。研究发现心肌成纤维细胞接受TGF-β刺激后,NLRP3表达也会升高,提示NLRP3参与了心肌纤维化过程[22]。NLRP3炎症小体在DCM纤维化过程中的具体分子机制还有待进一步探究。

对NLRP3炎症小体通路的负调控研究

抑制NLRP3炎症小体信号通路的起始步骤  瑞舒伐他汀可以通过抑制TXNIP来降低NLRP3、ASC、caspase-1和IL-1β的mRNA表达,改善肌纤维紊乱和线粒体肿胀[12]。外源性的硫化氢可以通过抑制TLR4/NF-KB通路,从而抑制心肌细胞NLRP3炎症小体激活[23]。钠-葡萄糖协同转运蛋白2抑制剂达格列净也可以明显降低NLPR3炎症小体相关成份基因表达,提高糖尿病小鼠心功能[24]

抑制NLRP3炎症小体信号通路的激活步骤  H3松弛素是胰岛素样生长因子超家族的一员,能通过减弱ROS和P2X7受体介导的NLRP3炎症小体激活,抑制高糖环境下心肌成纤维细胞胶原合成[13]。传统的中药七叶胆甙干预高糖环境下的H9C2细胞后,细胞质ROS和细胞色素C释放水平下调,NLRP3炎症小体激活被抑制,CRP、IL-1β、IL-18炎症因子水平明显降低[9]。Nrf2激活剂是一种主要的内源性抗氧化酶调节物质,有研究发现外源性的Nrf2激活剂叔丁基对苯二酚能通过上调NADPH醌脱氢酶,使ROS产生减少,进而抑制NLRP3的激活[25]。传统中药苦参碱具有抗氧化和抗炎作用,能减缓晚期糖基化终末产物诱导的内皮细胞损伤;研究发现,使用苦参碱干预内皮细胞后,NLRP3、ASC、caspase-1和IL-1β的水平均有所下降,而其能否抑制心肌细胞或心肌纤维细胞的NLRP3炎症小体通路还待进一步研究[26]

结语  NLRP3炎症小体是近几年被发现参与炎症反应、细胞焦亡过程的一种蛋白复合体,可能在DCM病理生理过程中发挥重要作用。深入研究NLRP3炎症小体在DCM过程中的激活分子机制,有助于完善DCM病理生理机制,为DCM的防治提供新的干预靶点。

参考文献
[1]
LORENZO-ALMORÓS A, TUÑÓN J, OREJAS M, et al. Diagnostic approaches for diabetic cardiomyopathy[J]. Cardiovasc Diabetol, 2017, 16(1): 28. [DOI]
[2]
WILLIAMS LJ, NYE BG, WENDE AR. Diabetes-related cardiac dysfunction[J]. Endocrinol Metabol, 2017, 32(2): 171. [DOI]
[3]
FRATI G, SCHIRONE L, CHIMENTI I, et al. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy[J]. Cardiovasc Res, 2017, 113(4): 378-388. [DOI]
[4]
LIU X, ZHANG Z, RUAN J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158. [DOI]
[5]
KIM YK, SHIN J, NAHM MH. NOD-like receptors in infection, immunity, and diseases[J]. Yonsei Med J, 2016, 57(1): 5-14. [DOI]
[6]
LUO B, LI B, WANG W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One, 2014, 9(8): e104771. [DOI]
[7]
ZHOU W, CHEN C, CHEN Z, et al. NLRP3:A novel mediator in cardiovascular disease[J]. J Immunol Res, 2018, 2018: 5702103. [URI]
[8]
SHAH MS, BROWNLEE M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes[J]. Circ Res, 2016, 118(11): 1808-1829. [DOI]
[9]
ZHANG H, CHEN X, ZONG B, et al. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation[J]. J Cell Mol Med, 2018, 22(9): 4437-4448. [DOI]
[10]
LIU Y, LIAN K, ZHANG L, et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury[J]. Basic Res Cardiol, 2014, 109(5): 415. [DOI]
[11]
LUO B, HUANG F, LIU Y, et al. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy[J]. Front Physiol, 2017, 8: 519. [DOI]
[12]
LUO B, LI B, WANG W, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model[J]. Cardiovasc Drugs Ther, 2014, 28(1): 33-43. [DOI]
[13]
ZHANG X, PAN L, YANG K, et al. H3 Relaxin protects against myocardial injury in experimental diabetic cardiomyopathy by inhibiting myocardial apoptosis, fibrosis and inflammation[J]. Cell Physiol Biochem, 2017, 43(4): 1311-1324. [DOI]
[14]
SCHILLING JD. Dousing fire with gasoline:interplay between lysosome damage and the NLRP3 inflammasome Focus on "NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption:roles for K+ efflux and Ca2+ influx"[J]. Am J Physiol Cell Physiol, 2016, 311(1): C81-C82. [DOI]
[15]
SHARMA A, TATE M, MATHEW G, et al. Oxidative stress and NLRP3-inflammasome activity as significant drivers of diabetic cardiovascular complications:therapeutic implications[J]. Front Physiol, 2018, 9: 114. [DOI]
[16]
LIU Q, ZHANG D, HU D, et al. The role of mitochondria in NLRP3 inflammasome activation[J]. Mol Immunol, 2018, 103: 115-124. [DOI]
[17]
DUEWELL P, KONO H, RAYNER KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature, 2010, 464(7293): 1357-1361. [DOI]
[18]
SHEEDY FJ, GREBE A, RAYNER KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation[J]. Nat Immunol, 2013, 14(8): 812-820. [DOI]
[19]
KANKKUNEN P, VÄLIMÄKI E, RINTAHAKA J, et al. Trichothecene mycotoxins activate NLRP3 inflammasome through a P2X7 receptor and Src tyrosine kinase dependent pathway[J]. Hum Immunol, 2014, 75(2): 134-140. [DOI]
[20]
TURNER NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs)[J]. J Mol Cell Cardiol, 2016, 94: 189-200. [DOI]
[21]
WAN Y, XU L, WANG Y, et al. Preventive effects of astragaloside Ⅳ and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome[J]. Eur J Pharmacol, 2018, 833: 545-554. [DOI]
[22]
BRACEY NA, GERSHKOVICH B, CHUN J, et al. Mitochondrial NLRP3 protein induces reactive oxygen species to promote smad protein signaling and fibrosis independent from the inflammasome[J]. J Biol Chem, 2014, 289(28): 19571-19584. [DOI]
[23]
HUANG Z, ZHUANG X, XIE C, et al. Exogenous hydrogen sulfide attenuates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation by suppressing TLR4/NF-κB pathway in H9c2 cells[J]. Cell Physiol Biochem, 2016, 40(6): 1578-1590. [DOI]
[24]
YE Y, BAJAJ M, YANG H, et al. SGLT-2 Inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes.further augmentation of the effects with saxagliptin, a DPP4 inhibitor[J]. Cardiovasc Drugs Ther, 2017, 31(2): 119-132. [DOI]
[25]
LIU X, ZHANG X, DING Y, et al. Nuclear factor E2-related factor-2 negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming[J]. Antioxid Redox Signal, 2017, 26(1): 28-43. [DOI]
[26]
ZHANG Y, YANG X, QIU C, et al. Matrine suppresses AGE-induced HAEC injury by inhibiting ROS-mediated NRLP3 inflammasome activation[J]. Eur J Pharmacol, 2018, 822: 207-211. [DOI]

文章信息

赵奕凯, 吴帮卫, 李剑
ZHAO Yi-kai, WU Bang-wei, LI Jian
NLRP3炎症小体在糖尿病心肌病(DCM)中作用机制的研究进展
Research progress on the mechanism of NLRP3 inflammasome in diabetic cardiomyopathy(DCM)
复旦学报医学版, 2020, 47(1): 117-121.
Fudan University Journal of Medical Sciences, 2020, 47(1): 117-121.
Corresponding author
LI Jian, E-mail: 13816066763@163.com.
基金项目
国家自然科学基金(81800330);上海市自然科学基金(17ZR1403700)
Foundation item
This work was supported by the National Natural Science Foundation of China (81800330) and the Natural Science Foundation of Shanghai (17ZR1403700)

工作空间