血管新生是一个动态、多阶段的生理过程, 需要多种协调活动, 通过血管内皮细胞(endothelial cells, ECs)的增殖、迁移和分化, 最终在原有血管的部位以出芽的形式形成新的微血管[1]。在正常成年人体内, 血管新生受到精确调控, 仅发生在胎盘血液循环的建立、卵巢周期中或伤口愈合的止血步骤之后[2]。生理条件下, 血管新生只会在一段特定的时间内被激活(通常是几天或几周), 随后就会被抑制, 而不适当的持续性血管新生往往与一系列疾病如肿瘤的生长和转移、动脉粥样硬化、糖尿病视网膜病变等有关[3]。血小板调节血管新生的机制包括:(1)释放多种促/抑血管新生蛋白:血小板α-致密颗粒中储存大量调控血管新生的生长因子, 血管新生激活蛋白包括血管内皮生长因子(vascular endothelial growth factor, VEGF)、血小板源性生长因子(platelet derived growth factor, PDGF)、表皮生长因子(epidermal growth factor, EGF)、基质金属蛋白酶-9(matrix metalloproteinase, MMP-9)、基质细胞衍生因子-1(stromal cell derived factor, SDF-1)等; 血管新生抑制蛋白包括内皮抑素(endostatin)、血小板因子4(platelet factor, PF4)、组织金属蛋白酶抑制剂(tissue inhibitor of matrix metalloproteinase, TIMPs)、纤溶酶原激活物抑制剂(plasminogen activator inhibitor, PAI)、血小板反应蛋白-1(thrombospondin-1, TSP-1)等; 肝细胞生长因子(hepatocyte growth factor, HGF)和转化生长因子-β(transforming growth factor, TGF-β)具有促进和抑制血管新生的双重作用[3-4]。(2)释放磷脂类信号分子:活化的血小板释放出具有生物活性的磷脂分子, 其中溶血磷脂酸(lysophosphatidic acid, LPA)、磷脂酸(phosphatidic acid, PA)和磷酸鞘氨醇(sphingosine 1-phosphate, S1P)参与调节成血管反应中最关键的第二信使[3, 5]; (3)血小板微泡(platelet microvesicles, PMVs):又称为血小板微颗粒(platelet microparticles, PMPs), 是从活化的血小板上脱落的脂膜, 具有与血小板类似的重要生物功能[6], 在血管新生中发挥重要作用[7]; (4)对ECs的作用:ECs是血小板释放的多种细胞因子作用的靶细胞, 来自血小板的成血管信号能诱导内皮细胞的表型改变, 进而发生增殖和迁移。此外, 血小板释放产物(platelet releasates, PRs)还能增强ECs集落形成细胞(endothelial colony forming cells, ECFCs)的成血管作用[8]。此外, 血小板微颗粒还能通过与ECs相互作用促进血管新生过程[9]。同时, ECs也能释放一系列血管生成因子, 对稳定血管壁有积极作用[10]。部分血小板释放的促/抑血管新生分子见图 1。
血小板颗粒 血小板内含有的颗粒主要有3类:α-颗粒、致密体和溶酶体, 其中α-颗粒为血小板内含量最多, 内容最丰富的颗粒[11]。蛋白质组学研究表明α-颗粒能释放上百种可溶性分子, 参与包括凝血、炎症反应、动脉粥样硬化形成、伤口愈合和血管新生在内的一系列生理及病理过程。在这些分子中, 研究最多的是促进血管新生的VEGF和抑制血管新生的内皮抑素。这些不同的血管新生调节因子被包装在形态不同的α-颗粒中, 当不同的蛋白酶激活受体(protease activated receptors, PARs)被激活时, 有选择性地被释放。PAR-1被激活时释放VEGF, PAR-4被激活时释放内皮抑素[12-14]。与之相似的是, 有研究报道碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)和TSP-1同样被分装在不同的α-颗粒内[12]。另一些研究提出了不同的结论。Kamysowski等[15]在高分辨率荧光显微镜下虽然未观察到不同亚型的α-颗粒, 但观察到细胞因子在α-颗粒内存在特定的空间分布, van Nispen等[16]也观察到相似的结果。Etulain等[17]用不同的蛋白酶激活受体激动蛋白(PAR-activator protein, PAR-AP)分别激活PAR-1和PAR-4, 观察人血小板产生VEGF和内皮抑素的总体效应, 发现循环中的内皮抑素维持抑制血管新生的稳定状态, 而在PAR-1与PAR-4激活后, α-颗粒通过分泌VEGF促进血管新生。Jonnalagadda等[18]则发现血小板分泌细胞因子的总量和速率受激活剂强度的影响, 但不会因激动剂种类不同而对血管产生不同的效应, 侧面支持了Etulain等[17]的结论。这些矛盾的研究结果表明, 虽然血小板对血管新生的总体效应是促进的, 但现阶段对α-颗粒释放产物调节机制的认识还很有限, 需要进一步对控制α-颗粒分泌的生物化学过程及其产物的蛋白质组学进行研究。阐明α-颗粒分泌细胞因子的机制有助于理解血小板在多种生理和病理状态下对血管新生的调节作用, 从而为调控该生物学过程的新药研发提供设计思路。α-颗粒对血管新生的总体促进效应也提示, 抗血小板治疗可能在与血管新生异常有关的疾病中起保护作用。
除α-颗粒外, King等[19]通过对载脂蛋白E(ApoE)和HSP3基因缺陷小鼠的研究发现, 在HSP3基因缺陷导致致密颗粒分泌缺乏的小鼠模型中, 动脉血栓形成、炎症反应和内膜增生程度均高于对照组小鼠。因此, 血小板致密颗粒分泌缺乏对冠状动脉粥样硬化的发生具有保护作用, 提示致密颗粒中的分泌物对血管重建有调控作用, 但其对血管重塑的影响是否独立于促血栓和促炎作用还有待进一步研究。
血小板磷脂 血小板磷脂是由α-致密颗粒释放的信号分子[20], 也被称为磷脂生长因子(phospholipid growth factor, PGF), 其化学本质为磷脂而非蛋白。在活化的血小板所释放多种生物活性磷脂分子中, LPA、PA和S1P与血管新生反应关系最密切。在哺乳动物体内, 磷脂类信号分子的受体主要是内皮细胞分化基因(endothelial cell differentiation gene, EDG)受体, 该受体是一类G蛋白耦联受体, 在组织和细胞中广泛分布, 对细胞的生长、发育、稳定和细胞骨架构建具有重要作用[21-22]。在所有磷酯类信号分子中, S1P的研究最为广泛, 它是由鞘氨醇经过鞘氨醇激酶(SphK1和SphK2)磷酸化后形成的生物活性分子[23]。S1P对包括维持动脉紧张度、血管新生、神经发生和内皮细胞屏障稳定在内的多种血管生理过程具有调控作用[24-27], 被认为是一种具有促血管新生作用的信号分子。S1P受体属于G蛋白耦联受体超家族, 已知有S1P1~S1P5 5种类型[28]。随着对S1P受体和信号通路的逐步认识, 发现S1P对血管新生的调节具有双重性, 并非单一的促进作用。Gaengel等[29]发现, S1P与S1P1结合后, 能够抑制VEGFR2信号通路, 提高VE-钙黏素在内皮细胞连接间的稳定性, 从而抑制内皮细胞增殖。Ben等[30]也证实在血管形成的过程中, S1P1具有维持新生血管正常形态, 并负性调节出芽式血管新生。Mascall等[31]通过对ECs、平滑肌细胞和成纤维细胞的共同培养, 发现S1P还能通过S1P2受体激活ROCK通路, 促进平滑肌细胞释放TIMP2, 发挥抑制血管新生的作用。Mousseau等[32]的研究也得出了相似结论, 提示S1P对血管新生的调节作用很可能与细胞表达的S1P受体类型和组织微环境有关。在心肌梗死后, 血管新生对挽救心肌细胞、恢复心脏功能具有重大意义, 目前以心功能重建为目的的心肌干细胞移植面临着由于血管新生不良等因素导致的心肌干细胞成活与分化率低的严峻问题[33]。S1P作为能同时与ECs和平滑肌细胞发生联系的信号分子, 对其调节血管新生机制的深入研究, 可能为心肌梗死后心脏功能重建提供新的作用靶点和治疗思路。
PMPs PMPs是从活化的血小板上脱落的一小块脂膜, 直径通常为0.1~1 μm。Kim等[7]在体外人脐静脉ECs培养中首次发现PMPs能促进ECs的增殖和存活, 该研究还表明PMPs对血管发育的作用是通过VEGF、FGF-2以及磷脂成分(如S1P)共同完成的。PMPs对血管新生的调控作用正在逐渐被认识。Brill等[34]对大鼠心肌缺血模型的研究也证实PMPs能通过释放VEGF促进血管新生。此外, Hayon等[35]在大鼠脑缺血模型中证实PMPs具有剂量依赖的促进血管和神经组织新生的作用, 该结果同时被另一项由Shan等[36]完成的关于PMPs对抗脑缺血再灌注损伤的研究所支持。Mause等[37]发现, PMPs还可以与具有成血管作用的早期内皮祖细胞(early outgrowth cells, EOCs)发生生物膜的同化与合并, 从而促进EOCs的表面抗原向ECs转换, 并诱导EOCs的分泌蛋白质组向促进ECs增殖、迁移及成毛细血管的方向转化。与该研究相符合的是, 用动脉粥样硬化患者外周血中分离得到的PMPs预处理血液循环中的成血管细胞后, 可以促进下肢缺血大鼠体内的血管新生, 该促血管新生效应依赖于PMPs释放的正常T淋巴细胞表达和分泌的活性调节蛋白[38]。一系列研究提示PMPs具有重要的临床意义, 在与异常血管新生相关疾病的临床应用中或许可以作为预后因子或新的治疗靶点。PMPs调节血管新生的主要机制如图 2所示。
血小板源产物的临床应用 虽然血小板促进血管新生的具体机制尚未完全阐明, 但其临床应用前景已受到广泛重视。已有研究尝试利用血小板凝胶、富血小板血浆、血小板裂解产物等血小板源产物促进体表创伤的愈合[39]、修复心梗后的心肌组织[40-41]、保护缺血性心肌病中遭受缺血再灌注损伤的心肌[41-42]、减轻缺血性脑卒中对局部脑神经组织的损伤[43]。Cheng等[40]利用免疫染色和微血管造影的方法在大鼠体内证实, 血小板凝胶具有促进毛细血管新生、保护心梗后损伤心肌的作用, 同时还发现在此过程中一些具有促血管新生作用的基因(如HGF, bFGF)被上调了。该研究认为血小板凝胶的促血管新生作用与其提供的物理支架环境与血小板分泌的各类可溶性成分有关。血小板促血管新生的作用在缺血导致的表皮损伤中也引起了重视, Anitua等[44]尝试通过皮下注射富含生长因子的血小板浓缩液, 治疗后肢缺血模型小鼠的表皮损伤, 在注射后对小鼠后肢进行正电子断层扫描及免疫组化分析后发现, 血小板浓缩液可以显著促进血管新生, 增加缺血部位的血流灌注, 加速肌肉修复, 并促进缺血部位伤口的愈合。
对血小板促血管新生作用的认识拓宽了临床中对下肢缺血损伤或糖尿病足部溃疡的治疗手段, 也为心梗后心肌组织的修复, 心功能的重建带来启发。富血小板血浆制成的凝胶已经在下肢缺血性病变和糖尿病足部溃疡的患者中得到应用并取得了良好效果, 可以有效加速血管新生, 促进创伤愈合, 具有良好的生物相容性、无毒、治疗花费低廉等优点, 具有广阔的临床应用前景[45-46]。
结语 随着越来越多的分子机制和信号通路被发现, 提示血小板对血管新生的调节处于精确而严密的信号网络之中, 使机体在需要时促进血管新生, 并在恰当的时候抑制血管异常增殖, 同时保证新生血管形态规则完整, 维持功能稳定。血管新生在多种生理或疾病中的关键地位决定了对血小板调节血管新生研究的重要临床意义, 不仅能为疾病的精准治疗提供可能靶点, 也可能作为某类疾病的预测、诊断、评价或预后因子, 有助于正确认识抗血小板治疗以及血小板成分输血治疗在相关领域的应用。对血小板调控血管新生认识的加深可为临床中以缺血为主要病理基础的疾病, 如心肌梗死、缺血性脑卒中、下肢缺血性疾病、糖尿病足部溃疡等提供了新的治疗思路, 从而优化治疗策略, 解决相应的临床问题。
[1] |
LOGSDON EA, FINLEY SD, POPEL AS, et al. A systems biology view of blood vessel growth and remodelling[J]. J Cell Mol Med, 2014, 18(8): 1491-1508.
[DOI]
|
[2] |
CARMELIET P. Angiogenesis in life, disease and medicine[J]. Nature, 2005, 438(7070): 932-936.
[DOI]
|
[3] |
WALSH TG, METHAROM P, BERNDT MC. The functional role of platelets in the regulation of angiogenesis[J]. Platelets, 2015, 26(3): 199-211.
[DOI]
|
[4] |
ERPENBECK L, SCHON MP. Deadly allies:the fatal interplay between platelets and metastasizing cancer cells[J]. Blood, 2010, 115(17): 3427-3436.
[DOI]
|
[5] |
XIAO H, SIDDIQUI RA, AL-HASSANI MH, et al. Phospholipids released from activated platelets improve platelet aggregation and endothelial cell migration[J]. Platelets, 2001, 12(3): 163-170.
[DOI]
|
[6] |
GOUBRAN HA, BURNOUF T, STAKIW J, et al. Platelet microparticle:a sensitive physiological "fine tuning" balancing factor in health and disease[J]. Transfus Apher Sci, 2015, 52(1): 12-18.
[DOI]
|
[7] |
KIM HK, SONG KS, CHUNG JH, et al. Platelet microparticles induce angiogenesis in vitro[J]. Br J Haematol, 2004, 124(3): 376-384.
[DOI]
|
[8] |
HUANG Z, MIAO X, PATARROYO M, et al. Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis[J]. J Thromb Haemost, 2016, 14(3): 606-618.
[DOI]
|
[9] |
SUN C, FENG SB, CAO ZW, et al. Up-regulated expression of matrix metalloproteinases in endothelial cells mediates platelet microvesicle-induced angiogenesis[J]. Cell Physiol Biochem, 2017, 41: 2319-2332.
[DOI]
|
[10] |
LOGSDON EA, FINLEY SD, POPEL AS, et al. A systems biology view of blood vessel growth and remodelling[J]. J Cell Mol Med, 2014, 18(8): 1491-1508.
[DOI]
|
[11] |
阮长耿, 吴国新. 血小板颗粒膜蛋白研究进展[J]. 中华血液学杂志, 1994, 15(3): 162-164. [URI]
|
[12] |
ITALIANO JE, RICHARDSON JL, PATEL-HETT S, et al. Angiogenesis is regulated by a novel mechanism:pro-and antiangiogenic proteins are organized into separate platelet granules and differentially released[J]. Blood, 2007, 111(3): 1227-1233.
[DOI]
|
[13] |
CHATTERJEE M, HUANG Z, ZHANG W, et al. Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli[J]. Blood, 2011, 117(14): 3907-3911.
[DOI]
|
[14] |
NYLANDER M, OSMAN A, RAMSTROM S, et al. The role of thrombin receptors PAR1 and PAR4 for PAI-1 storage, synthesis and secretion by human platelets[J]. Thromb Res, 2012, 129(4): e51-e58.
[DOI]
|
[15] |
KAMYKOWSKI J, CARLTON P, SEHGAL S, et al. Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules[J]. Blood, 2011, 118(5): 1370-1373.
[DOI]
|
[16] |
VAN NISPEN TPH, DE HAAS F, GEERTS W, et al. The platelet interior revisited:electron tomography reveals tubular alpha-granule subtypes[J]. Blood, 2010, 116(7): 1147-1156.
[DOI]
|
[17] |
ETULAIN J, MENA HA, NEGROTTO S, et al. Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets[J]. Platelets, 2015, 26(8): 799-804.
[DOI]
|
[18] |
JONNALAGADDA D, IZU LT, WHITEHEART SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner[J]. Blood, 2012, 120(26): 5209-5216.
[DOI]
|
[19] |
KING SM, MCNAMEE RA, HOUNG AK, et al. Platelet dense-granule secretion plays a critical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice[J]. Circulation, 2009, 120(9): 785-791.
[DOI]
|
[20] |
LEE MJ, VAN BROCKLYN JR, THANGADA S, et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1[J]. Science, 1998, 279(5356): 1552-1555.
[DOI]
|
[21] |
BEER MS, STANTON JA, SALIM K, et al. EDG receptors as a therapeutic target in the nervous system[J]. Ann N Y Acad Sci, 2000, 905: 118-131.
[URI]
|
[22] |
CHUN J, GOETZL EJ, HLA T, et al. International union of pharmacology.XXXIV.Lysophospholipid receptor nomenclature[J]. Pharmacol Rev, 2002, 54(2): 265-269.
[DOI]
|
[23] |
LE STUNFF H, PETERSON C, THORNTON R, et al. Characterization of murine sphingosine-1-phosphate phosphohydrolase[J]. J Biol Chem, 2002, 277(11): 8920-8927.
[DOI]
|
[24] |
YATOMI Y, RUAN F, HAKOMORI S, et al. Sphingosine-1-phosphate:a platelet-activating sphingolipid released from agonist-stimulated human platelets[J]. Blood, 1995, 86(1): 193-202.
[URI]
|
[25] |
MIZUGISHI K, YAMASHITA T, OLIVERA A, et al. Essential role for sphingosine kinases in neural and vascular development[J]. Mol Cell Biol, 2005, 25(24): 11113-11121.
[DOI]
|
[26] |
LEE OH, KIM YM, LEE YM, et al. Sphingosine 1-phosphate induces angiogenesis:its angiogenic action and signaling mechanism in human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun, 1999, 264(3): 743-750.
[DOI]
|
[27] |
WANG L, DUDEK SM. Regulation of vascular permeability by sphingosine 1-phosphate[J]. Microvasc Res, 2009, 77(1): 39-45.
[DOI]
|
[28] |
KIHARA Y, MACEYKA M, SPIEGEL S, et al. Lysophospholipid receptor nomenclature review:IUPHAR Review 8[J]. Br J Pharmacol, 2014, 171(15): 3575-3594.
[DOI]
|
[29] |
GAENGEL K, NIAUDET C, HAGIKURA K, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2[J]. Dev Cell, 2012, 23(3): 587-599.
[DOI]
|
[30] |
BEN SA, MALKINSON G, KRIEF S, et al. S1P1 inhibits sprouting angiogenesis during vascular development[J]. Development, 2012, 139(20): 3859-3869.
[DOI]
|
[31] |
MASCALL KS, SMALL GR, GIBSON G, et al. Sphingosine-1-phosphate-induced release of TIMP-2 from vascular smooth muscle cells inhibits angiogenesis[J]. J Cell Sci, 2012, 125: 2267-2275.
[DOI]
|
[32] |
MOUSSEAU Y, MOLLARD S, RICHARD L, et al. Fingolimod inhibits PDGF-B-induced migration of vascular smooth muscle cell by down-regulating the S1PR1/S1PR3 pathway[J]. Biochimie, 2012, 2523-2531.
[URI]
|
[33] |
张贵焘, 谭玉珍, 王海杰, 等. 骨髓源性心肌干细胞移植治疗心肌梗死的实验研究[J]. 中华心血管病杂志, 2007, 35(10): 940-944. [DOI]
|
[34] |
BRILL A, DASHEVSKY O, RIVO J, et al. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization[J]. Cardiovasc Res, 2005, 67(1): 30-38.
[DOI]
|
[35] |
HAYON Y, DASHEVSKY O, SHAI E, et al. Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia[J]. Curr Neurovasc Res, 2012, 9(3): 185-192.
[DOI]
|
[36] |
SHAN LY, LI JZ, ZU LY, et al. Platelet-derived microparticles are implicated in remote ischemia conditioning in a rat model of cerebral infarction[J]. CNS Neurosci Ther, 2013, 19(12): 917-925.
[DOI]
|
[37] |
MAUSE SF, RITZEL E, LIEHN EA, et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury[J]. Circulation, 2010, 122(5): 495-506.
[DOI]
|
[38] |
OHTSUKA M, SASAKI K, UENO T, et al. Platelet-derived microparticles augment the adhesion and neovascularization capacities of circulating angiogenic cells obtained from atherosclerotic patients[J]. Atherosclerosis, 2013, 227(2): 275-282.
[DOI]
|
[39] |
THEODORA C, SARA P, SILVIO F, et al. Platelet lysate and adipose mesenchymal stromal cells on silk fibroin nonwoven mats for wound healing[J]. J Appl Poly Sci, 2016, 133(5).
|
[40] |
CHENG K, MALLIARAS K, SHEN D, et al. Intramyocardial injection of platelet gel promotes endogenous repair and augments cardiac function in rats with myocardial infarction[J]. J Am Coll Cardiol, 2012, 59(3): 256-264.
[DOI]
|
[41] |
ZIEGLER M, WANG X, LIM B, et al. Platelet-targeted delivery of peripheral blood mononuclear cells to the ischemic heart restores cardiac function after ischemia-reperfusion injury[J]. Theranostics, 2017, 7(13): 3192-3206.
[DOI]
|
[42] |
BARI E, PERTEGHELLA S, FARAGÒ S, et al. Association of silk sericin and platelet lysate:premises for the formulation of wound healing active medications[J]. Int J Biol Macromol, 2018, 119: 37-47.
[DOI]
|
[43] |
ZHANG Y, YING G, REN C, et al. Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke[J]. Brain Res, 2015, 1594: 267-273.
[DOI]
|
[44] |
ANITUA E, PELACHO B, PRADO R, et al. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia[J]. J Control Release, 2015, 202: 31-39.
[DOI]
|
[45] |
MASSARA M, BARILLÀ D, De CARIDI G, et al. Application of autologous platelet-rich plasma to enhance wound healing after lower limb revascularization:A case series and literature review[J]. Semin Vasc Surg, 2015, 28(3-4): 195-200.
[DOI]
|
[46] |
MOHAMMADI MH, MOLAVI B, MOHAMMADI S, et al. Evaluation of wound healing in diabetic foot ulcer using platelet-rich plasma gel:a single-arm clinical trial[J]. Transfus Apher Sci, 2017, 56(2): 160-164.
[DOI]
|