2. 复旦大学基础医学院生理与病理生理学系 上海 200032;
3. 复旦大学附属华山医院内分泌科 上海 200040
2. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
3. Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性痴呆为主要临床表现的神经退行性疾病。在伴有AD的高血压患者临床治疗中, 血管紧张素转换酶抑制剂培哚普利(perindopril)在降低患者血压的同时能够显著改善认知功能[1], 但其机制尚不明确。针对AD发病机制有多种学说(如基因突变学说、Aβ毒性学说、tau蛋白异常修饰学说、微量元素学说等), 这些学说从不同的角度解析了AD的发病及病理过程。近年来的大量研究证实, 锌、铁、铜等金属离子与AD的发病及病理过程密切相关, 而应用金属螯合剂可显著改善AD模型小鼠的认知功能[2-3]。中枢神经系统中的游离锌离子主要存在于锌能神经元(zinc-enriched neurons, ZEN)的突触小泡内, 在突触活动过程中, 锌离子和谷氨酸共同释放到突触间隙并转运进入突触后神经元, 进而激活对突触可塑性的形成有重要作用的蛋白[4]。锌缺乏和锌过量都可导致神经系统功能障碍[4-5], 脑锌稳态的维持对于保持认知功能的稳定性具有重要的生理和病理意义。培哚普利能有效调节消化道对锌离子的吸收水平[6], 提示培哚普利在机体锌离子稳态调控中可能发挥重要作用。但培哚普利作为一种能够有效穿过血脑屏障的经典抗高血压药物[7], 是否通过调控脑内金属离子稳态, 尤其是锌稳态, 改善AD认知功能, 尚未见报道。
为明确培哚普利对脑内金属离子的调控作用及其机制, 本研究以APP/PS1转基因小鼠为研究对象, 检测培哚普利对小鼠认知功能, 锌离子、铁离子、锰离子、铜离子、镁离子、钙离子含量及锌转运体(Zn transporters, ZnTs)家族成员(ZnT1、ZnT2、ZnT3、ZnT4、ZnT5、ZnT6、ZnT7)mRNA表达水平的影响, 以期为进一步明确培哚普利改善AD认知功能的机制研究提供可靠的实验依据, 并为AD的药物治疗提供新的靶点和思路。
材料和方法实验材料及动物分组 培哚普利(天津施维雅制药有限公司)溶于0.5%羧甲基纤维素钠溶液中备用。6月龄APP/PS1转基因小鼠(B6C3-Tg85Dbo/J, 美国Jackson公司), 随机分为对照组(n=5)和培哚普利治疗组(n=5)分别用0.5%羧甲基纤维素钠和1 mg·kg-1·d-1培哚普利灌胃, 连续灌胃3个月。动物饲养和实验方案均符合动物伦理委员会规范。
水迷宫实验 应用morris水迷宫视频分析系统(SANS, 江苏赛昂斯生物科技有限公司)连续测试小鼠6天、每天1次。实验房间保持黑暗, 安静。每次由4个试验组成, 60 s作为一次试验的时间。每个试验过程如下:将小鼠从水池边缘的4个不同象限(东、南、西、北)面向水池壁放入, 让其在具有隐藏平台的水池中自由游泳60 s, 直到找到平台, 并在平台上停留3 s, 记作其逃避潜伏期; 如果找不到平台, 引导其在平台上停留10 s, 将逃避潜伏期记作60 s。第6天将平台撤掉, 将小鼠依次从东、南、西、北4个象限放入水池, 自由泳60 s, 视频设备记录其穿越平台次数。
电感耦合等离子体质谱检测 小鼠连续灌胃3个月后, 腹腔内注射戊巴比妥钠麻醉后, 断头处死, 迅速取大脑皮层组织。取组织前准备足量0.5 mL的离心管并使用分析天平称量其重量, 精确至小数点后4位, 记录相应数据后取每只小鼠大脑皮层组织50~100 mg置于相应离心管内, 称取总重量, 同样精确至小数点后4位; 用200 μL枪头将离心管内的组织转移至消解罐, 同时分别加200 μL浓硝酸至离心管内, 冲洗内壁后分别转移至相应消解罐中, 记录消解罐对应样本的顺序, 将消解罐按照顺序放入消解仪中, 启动消解程序, 消解完成后使用超纯水将内塞上的消解液转移至相应的消解罐内, 将消解罐按顺序放入赶酸仪中, 120 ℃ 3~4 h, 将液体层转移至相应的离心管中, 定容至相同体积后上机做电感耦合等离子体质谱(inductively coupled plasma mass spectrometry, ICP-MS)检测(iCAP tm RQ ICP-MS, 美国Thermo Fisher公司)。
real-time PCR Trizol法提取小鼠大脑皮层组织总RNA, 逆转录合成cDNA, real-time PCR检测小鼠大脑皮层组织中ZnT1、ZnT2、ZnT3、ZnT4、ZnT5、ZnT6和ZnT7的mRNA表达水平。反应条件为95 ℃ 3 min, 95 ℃ 15 s, 55 ℃ 15 s, 72 ℃ 20 s, 循环40次, 引物序列见表 1。
Gene | Primer sequence |
ZnT1 | Forward:5’-GACCAGGCAGAGCCAGAAAA-3’ |
Reverse:5’-TCCTCGCATATTCAGCTGCC-3’ | |
ZnT2 | Forward:5’-GGTGGAAGGTGACTGCGAG-3’ |
Reverse:5’-TCCTAAGAAGGACCGGGCT-3’ | |
ZnT3 | Forward:5’-AAGGCACAGCCTTCCACATC-3’ |
Reverse:5’-GAAAAGAAAGCCGTCGGTGG-3’ | |
ZnT4 | Forward:5’-TCGGAGAGCTTGTAGAGGTT-3’ |
Reverse:5’-GGTTCTCTGCACAGCCTCAT-3’ | |
ZnT5 | Forward:5’-TGTACAGCAGGTTACAGGGA-3’ |
Reverse:5’- CAGGGCTGCGTCTCACAT-3’ | |
ZnT6 | Forward:5’-CTCCACCAACAGCATC-3’ |
Reverse:5’-CCTCATCATTACCCAGT-3’ | |
ZnT7 | Forward:5’-GATGATGAATACAAACCACCCA-3’ |
Reverse:5’-ATGCCGTAGAGTAGTTCCACAA-3’ | |
β-actin | Forward:5’-TGTTACCAACTGGGACGACA-3’ |
Reverse:5’-GGGGTGTTGAAGGTCTCAAA-3’ |
统计学处理 应用GraphPad Prism7软件对实验数据进行分析, 两组之间使用t检验, P < 0.05为差异有统计学意义。
结果培哚普利改善AD模型小鼠认知功能 两组小鼠连续灌胃3个月后, 进行水迷宫实验, 统计软件分析各组小鼠的逃避潜伏期、穿越平台次数及游泳总距离。结果显示, 与对照组AD小鼠相比, 培哚普利组小鼠在第1、2、5、6天的逃避潜伏期分别降低35.8%、34.1%、46.7%和61.2%, 差异均有统计学意义(P=0.002 3, 0.012 7, 0.002 6和0.000 7)(图 1A); 培哚普利组小鼠第6天的逃避潜伏期相比第1天降低54.4%(P < 0.000 1), 而对照组小鼠第6天的逃避潜伏期相比第1天仅降低24.5%(P < 0.000 1);与对照组AD小鼠相比, 培哚普利组小鼠穿越平台的次数由0升至1, 且差异具有显著统计学意义(P < 0.000 1, 图 1B); 对照组和培哚普利组小鼠游泳总距离分别是532和829 cm, 各组间差异无统计学意义(图 1C)。
![]() |
A:Escape latency; B:Number of platform crossings on the sixth day; C:Total swimming distance.In each group, n=5.(1)P < 0.001, (2)P < 0.005, (3)P < 0.001.ND:Not detected. 图 1 水迷宫检测培哚普利对APP/PS1小鼠认知功能的影响 Fig 1 Effect of perindopril on cognitive function of APP/PS1 mice by morris water maze test |
培哚普利对小鼠大脑皮层中金属微量元素含量的影响 两组小鼠进续灌胃3个月后取大脑皮层, 应用ICP-MS技术检测锌、铁、锰、镁、钙、铜元素含量的变化。结果显示, 与对照组小鼠相比, 培哚普利组小鼠大脑皮层中锌离子含量升高27% (P=0.004 2), 而培哚普利与对照组小鼠大脑皮层的铁、锰、镁、钙、铜元素含量未见显著性差异(图 2)。
![]() |
The contents of zinc ion in perindopril group was increased by 27%(P=0.0042).There was no significant difference in the contents of iron ion, manganese ion, magnesium ion, calcium ion or copper ion between the two groups (n=5). 图 2 ICP-MS检测培哚普利对APP/PS1小鼠大脑皮层中金属微量元素含量的影响 Fig 2 Effects of perindopril on the contents of metal elements in cerebral cortex of APP/PS1 transgenic mouse detected by ICP-MS |
培哚普利对小鼠大脑皮层中锌转运体mRNA表达的影响 real-time PCR结果显示, 与对照组小鼠相比, 培哚普利组小鼠大脑皮层中锌转运体ZnT1的表达降低38%(P=0.002 2)。培哚普利组与对照组小鼠相比, 大脑皮层中ZnT2、ZnT3、ZnT4、ZnT5、ZnT6、ZnT7的mRNA表达未见显著性差异(图 3)。
![]() |
The expression of ZnT1 in perindopril group was reduced by 38%.There was no significant difference in the expression of ZnT2, ZnT3, ZnT4, ZnT5, ZnT6, ZnT7 between the two groups (n=5). 图 3 real-time PCR检测培哚普利对APP/PS1小鼠大脑皮层中锌转运体mRNA表达的影响 Fig 3 Effect of perindopril on the expression of zinc transporter mRNA in cortex of APP/PS1 mice by real-time PCR |
阿尔茨海默病(Alzheimer’s Disease, AD)是严重影响老年人健康的神经退行性疾病, 随着我国人口的日益老龄化, AD的发病呈逐年上升趋势[8-9]。由于目前缺乏有效的治疗手段, 寻找AD治疗的新靶点及相关药物具有重要的临床和社会意义。
AD的典型病理特征为脑内Aβ老年斑的形成, 然而, 以Aβ作为AD治疗靶点的多项药物开发与临床试验均未能有效改善AD的认知功能[10-11], Aβ老年斑的形成是导致认知损伤的原因抑或是机体反应性保护的结果, 尚有待进一步深入探讨[11-12]。因此, AD治疗新靶点是目前改善AD认知功能治疗的重要方向之一。抗高血压药物, 特别是钙通道阻滞剂和肾素-血管紧张素系统阻滞剂(如培哚普利), 有助于预防认知功能减退和痴呆[13], 能够减轻东莨菪碱所致的记忆缺陷, 并表现出增强记忆的作用[14]。培哚普利与依达帕胺联合治疗12个月可改善动脉高压患者的内皮细胞功能、微循环结构和功能参数以及认知功能[15]。培哚普利和替莫酚通过调节脑源性神经调节因子、神经炎症和氧化亚硝基应激, 对脂多糖诱导的认知障碍和淀粉样变有保护作用[16]。本研究以APP/PS1转基因小鼠为AD模型小鼠, 采用水迷宫实验证实, 培哚普利可以显著改善APP/PS1转基因小鼠的认知功能, 提示血管紧张素类药物在AD治疗中的潜在作用。
微量元素水平与AD的病理发生过程密切相关, AD患者脑内锌、铁、铜等离子含量升高, 同时伴随着血液和脑脊液中部分离子水平下降[17-19]。我们前期的研究结果证实, 锌在AD患者尸检脑组织及APP/PS1转基因小鼠脑组织的Aβ斑块中高度富集[20-22]。本研究发现, APP/PS1转基因小鼠在应用培哚普利3个月后, 大脑皮层的锌离子含量显著增加, 证实了培哚普利对脑锌代谢的调控作用。基于培哚普利对认知功能的改善作用, 我们推测促进锌离子在大脑皮层内的聚集可能是培哚普利改善AD认知的重要机制之一, 调控锌离子稳态可能成为AD治疗的重要途径。
然而, 锌离子不能自由通过细胞膜和细胞器膜, ZnTs、金属硫蛋白(metallothioneins, MTs)和ZIP家族是调控机体锌离子转运的3个重要蛋白家族[4, 23]。ZnT家族成员的主要作用是将锌运出细胞或隐藏在细胞器内, 以降低细胞质内的锌离子浓度。ZnT1是ZnT家族中最先被发现的锌转运体, 也是ZnT家族中唯一定位在细胞膜上的成员, 其功能是将锌离子外排出细胞, 从而维持细胞内外锌水平的稳定。ZnT3定位在突触小泡膜上, 其功能是将锌离子转运至突触小泡内, 使锌离子聚集在突触小泡内并在突触活动时释放到突触间隙。ZnT家族的其他成员主要定位在细胞内的各种细胞器膜上, 通过向细胞器内转运锌离子而降低细胞质内的锌离子浓度。已有多项研究证实, AD患者及APP/PS1转基因小鼠脑内存在ZnTs表达的变化[24-26]。为进一步明确培哚普利调控脑锌代谢的机制, 我们检测了APP/PS1转基因小鼠大脑皮层ZnTs的mRNA表达水平, 结果发现, ZnT1作为唯一定位在细胞膜上的ZnTs家族成员, 其mRNA表达显著下降, 证明培哚普利可通过调控ZnT1的表达水平, 进而影响锌离子的分布、改善AD的认知水平。
综上所述, 培哚普利可以通过下调大脑皮层ZnT1表达, 调控脑锌代谢, 进而改善APP/PS1转基因小鼠认知功能, 提示调控脑内锌稳态是培哚普利改善AD认知水平的重要机制之一。
[1] |
TZOURIO C, ANDERSON C, CHAPMAN N, et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease[J]. Arch Intern Med, 2003, 163(9): 1069-1075.
[DOI]
|
[2] |
WANG P, WANG ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease[J]. Ageing Res Rev, 2017, 35: 265-290.
[DOI]
|
[3] |
ADLARD PA, CHERNY RA, FINKELSTEIN DI, et al. Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta[J]. Neuron, 2008, 59(1): 43-55.
[DOI]
|
[4] |
SENSI SL, PAOLETTI P, BUSH AI, et al. Zinc in the physiology and pathology of the CNS[J]. Nat Rev Neurosci, 2009, 10(11): 780-791.
[DOI]
|
[5] |
TAKEDA A, TAMANO H. Significance of the degree of synaptic Zn2+ signaling in cognition[J]. Biometals, 2016, 29(2): 177-185.
[DOI]
|
[6] |
TUBEK S. Increased absorption of zinc from alimentary tract in primary arterial hypertension[J]. Biol Trace Elem Res, 2001, 83(1): 31-38.
[DOI]
|
[7] |
OHRUI T, TOMITA N, SATO-NAKAGAWA T, et al. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression[J]. Neurology, 2004, 63(7): 1324-1325.
[DOI]
|
[8] |
REITZ C, BRAYNE C, MAYEUX R. Epidemiology of Alzheimer disease[J]. Nat Rev Neurol, 2011, 7(3): 137-152.
[DOI]
|
[9] |
MARESOVA P, KLIMOVA B, NOVOTNY M, et al. Alzheimer's and Parkinson's diseases:expected economic impact on Europe-A call for a uniform european strategy[J]. J Alzheimers Dis, 2016, 54(3): 1123-1133.
[DOI]
|
[10] |
NEVE RL, ROBAKIS NK. Alzheimer's disease:a re-examination of the amyloid hypothesis[J]. Trends Neurosci, 1998, 21(1): 15-19.
[DOI]
|
[11] |
HARDY J, SELKOE DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.
[DOI]
|
[12] |
MCGEER PL, MCGEER EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease:implications for therapy[J]. Acta Neuropathol, 2013, 126(4): 479-497.
[DOI]
|
[13] |
ROUCH L, CESTAC P, HANON O, et al. Antihypertensive drugs, prevention of cognitive decline and dementia:a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms[J]. CNS Drugs, 2015, 29(2): 113-130.
|
[14] |
NADE VS, KAWALE LA, VALTE KD, et al. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory[J]. Indian J Pharmaco, 2015, 47(3): 263-269.
|
[15] |
ZHELEZNYKH EA, DANILOGORSKAYA YA, PRIVALOVA EV, et al. Combination antihypertensive therapy with perindopril and indapamide in patients with essential hypertension:effect on endothelial and cognitive markers of vascular improvement[J]. Adv Ther, 2018, 35(10): 1698-1712.
[DOI]
|
[16] |
ALI MR, ABO-YOUSSEF AM, MESSIHA BA, et al. Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress[J]. Naunyn-Schmiedebergs Arch Pharmacology, 2016, 389(6): 637-656.
[DOI]
|
[17] |
VENTRIGLIA M, BREWER GJ, SIMONELLI I, et al. Zinc in Alzheimer's disease:a meta-analysis of serum, plasma, and cerebrospinal fluid studies[J]. J Alzheimers Dis, 2015, 46(1): 75-87.
[DOI]
|
[18] |
HOZUMI I, HASEGAWA T, HONDA A, et al. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases[J]. J Neurol Sci, 2011, 303(1-2): 95-99.
[DOI]
|
[19] |
AYTON S, DIOUF I, BUSH AI. Evidence that iron accelerates Alzheimer's pathology:a CSF biomarker study[J]. J Neurol Neurosurg Psychiatry, 2018, 89(5): 456-460.
[DOI]
|
[20] |
张丽红, 于丹, 王辛, 等. 锌离子与锌转运体6在APP/PS1转基因小鼠小脑内的分布[J]. 复旦学报(医学版), 2009, 36(1): 65-69. [DOI]
|
[21] |
ZHANG LH, WANG X, STOLTENBERG M, et al. Abundant expression of zinc transporters in the amyloid plaques of Alzheimer's disease brain[J]. Brain Res Bull, 2008, 77(1): 55-60.
[DOI]
|
[22] |
ZHANG LH, WANG X, ZHENG ZH, et al. Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain[J]. Neurobiol Aging, 2010, 31(1): 74-87.
[DOI]
|
[23] |
HOJYO S, FUKADA T. Zinc transporters and signaling in physiology and pathogenesis[J]. Arch Biochem Biophys, 2016, 611: 43-50.
[DOI]
|
[24] |
SMITH JL, XIONG S, MARKESBERY WR, et al. Altered expression of zinc transporters-4 and -6 in mild cognitive impairment, early and late Alzheimer's disease brain[J]. Neuroscience, 2006, 140(3): 879-888.
[DOI]
|
[25] |
LOVELL MA. A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer's disease[J]. J Alzheimers Dis, 2009, 16(3): 471-483.
[DOI]
|
[26] |
LOVELL MA, SMITH JL, XIONG S, et al. Alterations in zinc transporter protein-1(ZnT-1) in the of subjects with mild cognitive impairment, early, and stage Alzheimer's disease[J]. Neurotox Res, 2005, 7(4): 265-271.
[DOI]
|