圆锥角膜是一种原发性、非炎症性角膜膨隆性疾病,特征表现为进行性的角膜中央部或旁中央变薄并向前呈锥形突出,引起不规则散光、屈光性近视,最终导致视力下降甚至致盲[1]。圆锥角膜累及双侧,但双眼发病间隔时间可达数年,多在青春期发病,并持续进展至30~40岁,据统计圆锥角膜在10~40岁人群中发病率约13.3/10万,患病率约265/10万[2]。但圆锥角膜的发病原因及机制仍不明确,可能涉及环境、遗传、生物力学、生物化学等因素的综合作用[1]。
早期或亚临床期圆锥角膜起病隐匿,缺乏典型临床表现,诊断较为困难,是角膜屈光术后发生角膜膨隆的重要危险因素。角膜屈光手术需对角膜基质进行切削,可触发潜在圆锥角膜患者病情进展,发生角膜扩张。首例准分子激光原位角膜磨镶术(laser-assisted in situ keratomileusis,LASIK)、激光屈光角膜切削术(photorefractive keratectomy,PRK)及飞秒激光小切口角膜基质透镜取出术(small incision lenticule extraction,SMILE)后的医源性角膜扩张分别报道于1998年[3]、2000年[4]及2015年[5]。随着角膜屈光手术的开展越来越广泛,早期诊断圆锥角膜、筛查高危角膜是临床工作中的热点。通过现有的角膜地形图及角膜生物力学分析仪等检查手段,诊断临床期圆锥角膜并不困难。但是,对于早期或亚临床圆锥角膜以及角膜屈光手术高风险角膜,目前没有统一的诊断标准,这部分患者通常矫正视力正常,无相关体征,角膜地形图可无任何明细异常表征,或仅有前表面曲率分布对称性欠佳、下方变陡、斜轴散光等非特异性改变,容易被漏诊,成为角膜屈光术的安全隐患[1]。本文将针对临床圆锥角膜早期诊断的新技术和新方法进行综述。
基于Scheimpflug原理的三维眼前节分析系统 基于Scheimpflug原理的三维眼前节分析系统在圆锥角膜的筛查和诊断中得到了广泛应用,相关设备包括Pentacam(OCULUS GmbH,Wetzlar,德国)、Sirius(Costruzione Strumenti Oftalmici,Florence,意大利)和Galilei(Ziemer,Biel,瑞典)等眼前节分析系统。Pentacam使用单旋转Scheimpflug技术,后者在此基础上结合了Placido盘或使用双旋转Scheimpflug技术。其中,Pentacam眼前节全景仪为应用较为广泛、较为敏感的眼前节测量设备,其可以在2 s内获得50张眼前节断层图像,每张照片包含500个高度点,用于计算包括前后表面高度图、前房深度等各类数据,同时可进行角膜的三维重建[6-7]。此外,Pentacam系统还提供角膜厚度、角膜波前像差以及光密度等数据,全方位分析角膜形态及光学特性[8]。
研究表明,对于重要的参数,如角膜平均曲率(mean keratometry,Kmean)、角膜最薄点厚度(thinnest corneal thickness,TCT)、前房深度(anterior chamber depth,ACD)和平均后表面曲率(mean posterior keratometry,pKm),3种眼前节分析系统均有较好的重复性,但Pentacam、Sirius的重复性较Galilei更好[9],且三者测量结果具有显著差异,不可交换使用[9-10]。
使用Pentacam相关指标进行诊断时,也应当注意其他影响因素。Roshdy等[11]研究表明,年龄是角膜厚度和高度测量值的重要影响因素,相比 > 40岁的人群,< 21岁的健康人群表现出后表面高度显著减少及前表面高度显著增加。此外,角膜直径也是另一重要影响因素。Boyd等[12]报道显示在中国及北美人群中,角膜直径与大多数Pentacam测量指标具有显著关联性,受影响最大的为厚度增长指数(pachymetry progression index,PPI)及Belin/Ambrosio增强扩张显示总偏差值(Belin/Ambrosio enhanced ectasia total deviation index,BAD-D值)。Ding等[13]在中国患者中的研究同样发现大部分参数与角膜直径显著相关,其中BAD-D值在角膜直径≤11 mm的患者组中显著增大,使得50.5%的患者被标记为可疑或异常,表明角膜直径作为一项重要变量,应当被纳入到BAD分析中。此外,干眼患者泪膜稳定性下降,可能会影响角膜中央厚度、角膜前表面高度的测量准确性[14-15],重睑术[16]、熬夜[17]等也可能通过影响泪膜稳定性对地形图测量造成影响,在临床工作中需加以甄别。
屈光四联图 角膜曲率图:角膜曲率一直以来被认为是诊断圆锥角膜的重要依据,包含平均曲率(Kmean)、最大曲率(maximum keratometry,Kmax)、角膜散光度数等。Toprak等[18]研究显示Kmean及Kmax诊断圆锥角膜的受试者操作特征曲线下面积(AUROC)分别为0.908和0.981,诊断界值分别为45.2 D(敏感度45.2%,特异度92.4%)及47.4 D(敏感度92.9%,特异度92.4%),但角膜散光度数诊断圆锥角膜的AUROC仅为0.818。然而,对于亚临床圆锥角膜或早期圆锥角膜,角膜曲率值的诊断能力不足[19]。同时,角膜曲率图的形态也需要关注,规则散光呈对称领结形,而不规则的角膜则可呈不对称领结形、圆形、卵圆形等,提示圆锥角膜可能[20]。
角膜前后表面高度图:由角膜前后表面高度与根据角膜8 mm直径内的高度数据生成的最佳拟合球面(best-fit sphere,BFS)之间的差值绘制而成,前后表面高度通常指角膜中央5 mm范围内的最大高度值。前表面高度在临床圆锥角膜中可有显著增加,Ucakhan等[21]报告前表面高度鉴别圆锥角膜及亚临床圆锥角膜的AUROC为0.937及0.754,诊断界值为15.5 μm(敏感度93.2%,特异度85.7%)和9.5 μm(敏感度81.8%,特异度65.1%)。相比前表面,后表面通常最先发生异常,后表面高度显著增加被认为是早期圆锥角膜的形态学征象之一,诊断准确性高于前表面高度[21-22]。对于临床期圆锥角膜的诊断,后表面高度的敏感度和特异度 > 90%,如Ucakhan等[21]报告后表面高度值对于鉴别圆锥角膜和亚临床圆锥角膜的AUROC分别为0.93和0.79,诊断界值分别为26.5 μm(敏感度97.7%,特异度81.0%)和20.5 μm(敏感度81.8%,特异度66.7%),与de Sanctis等[23]研究结果相似。而Mihaltz等[24]报告后表面高度用于诊断临床圆锥角膜的界值较低,仅为15.5 μm(敏感度95.1%,特异度94.3%),与Kamiya等[25]报告结果相似,不同的诊断界值可能与研究人群有关。
角膜厚度图:角膜厚度指标包括角膜中央厚度(corneal central thickness,CCT)、角膜最薄点厚度(thinnest corneal thickness,TCT)、角膜顶点厚度等,研究表明角膜厚度随着圆锥角膜严重程度的提高而降低[26]。Toprak等[18]研究显示,TCT诊断圆锥角膜的AUROC为0.956,诊断能力优于CCT及角膜顶点厚度,界值为513 μm(敏感度89.6%,特异度93.3%),而Kamiya等[25]报道结果相似(AUROC=0.923,界值为504 μm)。Prakash等[27]则提出,TCT < 461 μm或角膜中央与最薄点厚度差 > 27 μm时只有2.5%为正常角膜。此外,双眼的厚度差异也值得关注。Dienes等[28]研究显示,双眼的CCT及TCT差异对于鉴别圆锥角膜有最大的AUROC,分别为0.99及0.98,诊断界值分别为12 μm(敏感度98%,特异度95%)及10 μm(敏感度97%,特异度94%),诊断能力略优于后表面高度(AUROC=0.96),表明双眼角膜形态差异有助于圆锥角膜的诊断。
“RED ON RED”原则:屈光四联图需综合分析,若患者满足“RED ON RED”原则,即前表面最高点、后表面最高点、角膜最薄点、角膜曲率最大值点存在对应关系,则高度提示为圆锥角膜[29]。
地形数据图指标 通过角膜地形数据计算得出地形数据图指标,包括表面变异指数(index of surface variance,ISV)、垂直非对称性指数(index of vertical asymmetry,IVA)、圆锥角膜指数(keratoconus index,KI)、中心圆锥角膜指数(central keratoconus index,CKI)、高度非对称性指数(index of highest asymmetry,IHA)、高度偏心指数(index of highest decentration,IHD)及最小曲率半径(minimum sagittal curvature,Rmin)等,用于量化角膜前表面的不规则性。研究已表明地形图数据参数对于诊断亚临床圆锥角膜有一定作用,但单个参数的诊断效能有限(AUROC < 0.9)[30],需要结合其他参数以获得最佳效果,如Hashemi等[31]研究结合BAD-D值、IVA、ISV、第五阶垂直慧差建立的逻辑回归模型(AUROC=0.96,灵敏度83.6%,特异度96.9%)。
Belin/Ambrosio增强扩张图 Belin/Ambrosio增强扩张图(Belin/Ambrosio enhenced ectasia Display,BAD)则改进了BFS的计算方法,所用数据排除了角膜最薄点周边3.5 mm区域。研究已证实,角膜前后表面高度值与来源于BAD的前表面高度差、后表面高度差检测临床期圆锥角膜较为敏感,AUROC可达到0.99以上[23, 32],但对于鉴别亚临床圆锥角膜与正常角膜,其AUROC均有不同程度的下降。研究显示,对于检测亚临床圆锥角膜,高度相关参数的AUROC均 < 0.8[30, 33]。Huseynli等[32]所得前表面高度的AUROC为0.935,其余均 < 0.9,所提供的前表面高度、前表面高度差、后表面高度和后表面高度差的诊断界值分别为5.0、5.0、8.0和8.0 μm,灵敏度分别为96.2%、92.5%、92.5%和84.9%。不同研究结果的差异可能与亚临床圆锥角膜的诊断标准不一有关。Belin等[34]提出计算以角膜最薄点为中心3 mm范围的角膜前后表面曲率半径(ARC/PRC-3mm),并纳入圆锥角膜的分级系统中,后续Yousefi等[35]研究发现,对于相对早期圆锥角膜(Amsler-Krumeich分类1~2级),PRC-3mm有最高诊断效能,AUROC=0.986,诊断界值为5.84时,灵敏度为95.9%,特异度为95.5%,接近于Kmax(AUROC=0.979),显示了PRC在圆锥角膜早期诊断中的价值。
角膜厚度变化图(corneal thickness spatial profile,CTSP)以及角膜厚度变化率图(percentage thickness increase,PTI)分别描述了角膜从最薄点至周边各同心圆的平均厚度及厚度增长率,以红线表示,而正常人群的平均增长情况及95%CI以虚线表示,可较为直观地鉴别正常薄角膜及早期圆锥角膜[32, 36]。厚度增长指数PPI为描述角膜各子午线厚度分布的指数,在标准人群资料中PPI为1。Ambrosio等[37]研究显示,PPIave、PPImax与PPImin均可较好地鉴别圆锥角膜,AUROC依次为0.98、0.977和0.939,诊断界值分别为1.06、1.44和0.79。Song等[38]研究显示,PPImax对于诊断亚临床圆锥角膜的AUROC为0.756,诊断界值为1.34(敏感度63.64%,特异度88.57%)。Ambrosio等[37]根据PPI及TP提出了Ambrosio相对厚度(Ambrosio relational thickness,ART),包括ART平均值(ARTave=TP/PPIave)以及ART最大值(ARTmax=TP/PPImax)。对于鉴别正常与圆锥角膜,ARTave和ARTmax具有最高的AUROC,分别是0.987和0.983,最好的诊断界值为424和339 μm,且PPI和ART具有比TCT和CCT更高的AUROC[33, 37]。但对于亚临床圆锥角膜的诊断,角膜厚度参数的效能并不肯定[30, 32-33],有研究表明ART在单侧圆锥角膜的对侧眼与正常眼的比较中无明显差异[39-40],不同的研究结果可能与患者选择有关。
BAD-D值是由BAD软件对角膜高度、厚度等参数进行整合计算得出的诊断值,反映圆锥角膜的总体风险情况。研究表明,BAD-D值对于圆锥角膜的诊断效能优于其他单个参数,AUROC可接近1.00[31-33]。D值诊断亚临床圆锥角膜的效能仍有争议,不同研究得出的AUROC范围在0.62~0.82,推荐的诊断界值在1.24~2.06,而Pentacam系统默认可疑值为1.6~2.6,异常值为 > 2.6[30-32, 40]。
目前,临床上对于亚临床圆锥角膜的诊断仍存在不足,部分患者初次就诊时角膜地形图可仅有非特异性改变,难以明确诊断,需要持续随访观察角膜地形图的变化情况。评估圆锥进展常用的指标为Kmax(增加≥1 D)或柱镜度(增加≥1 D),然而研究显示两者的评估能力不足[41]。2015年的全球专家共识指出,满足下列至少两点有助于监测圆锥角膜进展[42]:角膜前表面变陡、角膜后表面变陡、角膜厚度变薄或从周边至中央的变化速率增加。近年来,Belin等[43]研发了Belin ABCD进展图,利用ARC(3 mm区域)、PRC(3 mm区域)、最薄点厚度和最佳矫正视力这4项指标,结合正常人及圆锥角膜患者的检查数据,计算出80%CI和95%CI以监测疾病进展。研究显示Belin ABCD进展图检测圆锥进展较传统参数更为敏感[41]。
角膜光密度检测 角膜光密度值可用于评价角膜透明度。角膜组织学的改变包括胶原纤维的大小及排列的规律性改变,均可影响角膜透明度,导致角膜光密度值改变[44]。研究表明,圆锥角膜的光密度值较正常眼可有不同程度的增加,与圆锥角膜的严重程度呈显著正相关[44],且在角膜胶原交联术(corneal collagen cross-Linking,CXL)后发生改变[45]。在圆锥角膜的早期诊断方面,Koc等[46]对比了角膜地形图及BAD均显示正常的亚临床圆锥角膜与正常角膜,发现在角膜全层0~2 mm区域,以及前层和中心层的0~6 mm区域,光密度值显著增加,其中角膜前层0~2 mm区域AUROC最高(0.883),诊断界值为19.7时,灵敏度为75%,特异度为90%,表明中心区域光密度值的增加有助于检测亚临床圆锥角膜。
Pentacam系统与人工智能算法的结合 近年来人工智能广泛应用于医学领域中,通过分析医学影像、病理图像等相关医疗数据,可提高疾病诊治的效率和准确性。基于Pentacam所得参数或图像,研究者们运用回归分析、支持向量机、随机森林等算法生成圆锥角膜的智能检测及分类系统。Hidalgo等[47]使用支持向量机算法分析了25个Pentacam参数,生成检测程序(keratoconus assistant,KA),对于圆锥角膜的诊断准确性为98.9%,敏感度为99.1%,对不同角膜状态的分类准确性达到88.8%。Lopes等[48]使用随机森林模型建立了Pentacam随机森林指数,检测能力优于BAD-D。Issarti等[49]使用Zernike多项式拟合角膜前后表面高度数据,并通过前馈神经网络得到Logik指数,对圆锥角膜的诊断准确性优于BAD-D及TKC系统,分级平均准确性达到99.9%。Xie等[50]则使用卷积神经网络分析Pentacam图像,得到分类系统PIRSS,检测准确性达94.7%,与屈光手术专家水平相近。Cao等[51]则比较了最常用的8种机器学习模型,发现对诊断亚临床圆锥角膜,运用随机森林模型、支持向量机模型、K-近邻模型生成的检测系统有最好的表现。此外,Ambrosio等[52]研究显示Pentacam系统与角膜生物力学检测的结合能提供更强的诊断能力,提示结合角膜生物力学参数或图像的人工智能模型可能会有更好的准确性。
角膜生物力学检测 圆锥角膜的发生可能与角膜生物力学特性的改变相关,而角膜形态和高度的改变可能是生物力学特性变化后的继发性改变,因此检测角膜生物力学特性可能有助于圆锥角膜的早期诊断[53]。
眼反应分析仪 眼反应分析仪(ocular response analyzer,ORA)(Reichert Technologie)是临床上首台可用于活体测量角膜生物力学特性的仪器,其使用快速空气脉冲压平角膜,能够得到角膜滞后量(corneal hysteresis,CH)和角膜阻力因子(corneal resistance factor,CRF)等指标。CH和CRF在圆锥角膜眼中显著降低,而对于鉴别早期圆锥角膜,CH和CRF的AUROC分别为0.68和0.79,诊断界值分别为9.6(敏感度66%,特异度68%)和9.7(敏感度71.8%,特异度77.3%)[54]。Kirgiz等[55]研究则显示CH和CRF诊断早期圆锥角膜的AUROC分别为0.85和0.90;也有研究显示CH和CRF不能有效鉴别亚临床圆锥角膜[56-57];有研究认为CH和CRF受角膜厚度的影响较大,只能部分反映角膜力学特性[58]。
Corvis ST Corvis ST(Oculus,Wetzlar,德国)是目前应用较广泛的可视化角膜生物力学分析仪,采用高速Scheimpflug照相机摄录角膜受脉冲气流喷击后发生的形变及恢复过程,通过计算形变发生的时间(第一/二压平时间)、范围(第一/二压平长度)、速率(第一/二压平速率)、最大形变幅度(deformation amplitude,DA)等参数反映角膜生物力学特性,重复性佳[59],可以作为圆锥角膜早期诊断的重要辅助手段。有研究指出Corvis ST在诊断圆锥角膜时采用单个参数的诊断能力较差,多参数结合或可提高其诊断能力[60]。
在此基础上,Vinciguerra等[61]筛查报告结合了最大形变幅度比值(DA ratio)、ART、综合半径和第一压平时间角膜硬度值,生成了Corvis生物力学指数(Corvis biomechanical index,CBI),用于诊断圆锥角膜,诊断试验显示当CBI诊断阈值设为0.50时具有最高的诊断效能(AUROC=0.983,灵敏度为94.1%,特异度为100%)。但CBI值会受到角膜厚度的影响,且在薄角膜人群中易出现假阳性,而在厚角膜人群中易出现假阴性[62]。
角膜地形图生物力学指数(tomographic and biomechanical index,TBI)在CBI的基础上结合了BAD-D及Kmax等角膜地形图参数,将角膜形态学与力学相结合,可显著提高顿挫型圆锥角膜的诊断效力[52],诊断界值为0.79时,检测角膜膨隆的灵敏度和特异度均达到100%,而诊断界值为0.29时,对于亚临床圆锥角膜的诊断灵敏度为90.4%,特异度为96%,均优于BAD-D和CBI[52]。Koc等[63]对比了角膜地形图检测(包括BAD图)均正常的亚临床圆锥角膜眼与正常眼,发现A2L、A1V、A2V和TBI在两组间有显著差异,而在两组的鉴别方面,TBI有最大的AUROC(0.790),推荐的诊断界值为0.29,其次是A1V(0.639)和CBI(0.615),与Ambrosio等[52]及Chan等[64]的研究结果相近。
激光视力矫正(laser vision correction,LVC)术改变了角膜的厚度和结构,术后会表现出生物力学减弱,使得LVC术后正常眼与术后角膜扩张眼难以区分,Yang等[62]研究显示CBI值无法用于这两者的鉴别。新版的Corvis ST分析软件已加入LVC术后评估指标CBI-LVC,可用于临床监测LVC术后角膜生物力学状态[65-66]。
除角膜厚度外,眼内压(intraocular pressure,IOP)与角膜生物力学的测量存在相互影响[67-68]。首先,IOP的测量本身受到角膜生物力学特性的影响[67-68];其次,角膜的应力-应变关系为非线性,其弹性模量会随着IOP的增加而增加[69],这一关系使得准确描述在体角膜生物力学特性变得较为困难。为解决这一问题,Eliasy等[68]建立了角膜应力-应变指数(stress-strain index,SSI)算法,其使用有限元模型模拟了IOP以及Corvis ST脉冲气流作用下的角膜形态变化,旨在排除IOP及角膜几何形态的影响,用于准确描述在体角膜的材料硬度,并能够建立角膜组织的应力-应变曲线,其标准值为1.0,但该研究提出的SSI算法目前仅适用于具有正常地形图的角膜。经Eliasy等[68]验证,SSI在正常眼中独立于IOP与CCT,但与年龄显著相关。Wang等[70]在正常近视人群中研究发现,SSI的重复性佳,且薄角膜组(CCT≤500 μm)的SSI与正常厚度角膜组(500 μm < CCT≤550 μm)无显著差异,但这两组的SSI与厚角膜组(CCT > 550 μm)有显著差异。而Liu等[71]研究发现SSI与IOP及角膜前表面陡峭曲率半径有相关性。Maklad等[72]在计算模型中考虑了角膜和脉冲气流间的流固耦合效应,得出了新参数fIOP及fSSI,经验证其与CCT、角膜曲率无相关性,而与年龄有更强的正相关性,表明这两个参数可能略优于生物力学校正的眼内压和SSI。目前仍缺乏将SSI用于早期或亚临床期圆锥角膜诊断的相关报道。
眼前节光学相干断层成像 眼前节光学相干断层成像(optical coherence tomography,OCT)技术的原理是利用近红外相干光照射到组织,然后测量从组织结构反射回来的延迟光线,从而实现对浅层生物组织的横断面成像和定量分析,按照技术类型可分为时域OCT(time-domain OCT,TD-OCT)、频域OCT(spectral domain/Fourier-domain OCT,SD-OCT/FD-OCT)等。角膜上皮的重塑可部分代偿角膜基质膨隆所造成的屈光力增加,无法通过前表面角膜地形图发现[73],而眼前节OCT能够提供角膜及眼前节的高分辨率、三维成像,得到角膜全层或某一层的厚度、曲率及像差,使得检测角膜上皮或Bowman层的早期病理变化成为了可能。研究表明眼前节OCT测量重复性佳,但与基于Scheimpflug的眼前节分析系统的检测结果不通用[74-75]。由于红外光比可见光有更好的组织穿透性,OCT在表面高度不规则或伴浑浊的严重圆锥角膜的成像方面具有优势[76]。
圆锥角膜具有特殊的角膜亚层厚度分布模式,表现为角膜上皮和基质层厚度在颞上方较薄,鼻下方较厚,且这一分布模式在上皮层更为显著,在亚临床圆锥角膜中也有类似的表现[77]。Li等[77]通过模式偏差图发现上皮变薄的位置更偏向颞侧,且模式标准差(pattern standard deviation,PSD)在角膜厚度、上皮厚度、基质厚度中均显著增加,其中上皮PSD值诊断亚临床圆锥角膜的效能最高(AUROC=0.985)。
圆锥角膜可表现出前后表面积的比例失衡。Kitazawa等[78]使用眼前节OCT得到角膜前后表面高度数据,计算并研究了角膜前后表面积,发现对比正常眼,角膜前后表面积之比(As/Ps)在亚临床圆锥角膜组显著下降,角膜中心5 mm直径区域内As/Ps有最高的AUROC(0.948),表明角膜前后表面积的失衡可能反映出了圆锥角膜早期变化。
使用新型眼前节OCT进行圆锥角膜诊断的研究有偏振敏感型OCT[79-80]、超高分辨率OCT[81-82]等,未来仍需更多研究验证其鉴别亚临床或早期圆锥角膜的能力。
活体共聚焦显微镜 作为一种非侵入性的成像技术,活体共聚焦显微镜(in-vivo confocal microscopy,IVCM)可以在细胞水平上观察活体角膜各层的显微结构,已被广泛用于感染、干眼等角膜疾病的诊治中。圆锥角膜各层可有显微结构的改变,但关于IVCM诊断能力的报道较少[83-84]。
不同研究显示,基底部上皮细胞密度在圆锥角膜眼中显著减少[84]或无明显差异[85]。部分患者前弹力层形态在圆锥的区域可出现分裂及破坏,与上皮细胞及基质的角膜细胞相互混杂[86]。针对基质层的研究发现,圆锥角膜前部和后部基质角膜细胞密度比显著减少[87-88],前部和后部基质细胞面积比显著增加,且随着疾病加重而进一步增加[87]。另有研究发现,前部和后部基质角膜细胞密度比在亚临床圆锥角膜及圆锥角膜患者的健康亲属中也有显著改变[85]。
圆锥角膜基底下神经丛的形态、数目等可发生变化。Patel等[89]绘制的角膜基底下神经丛分布图显示,在圆锥顶点的神经纤维表现出显著的迂曲,伴闭环形成,而圆锥基底部的神经纤维沿基底轮廓走行,伴部分纤维向心分布。对比正常眼,圆锥角膜眼的角膜神经纤维密度、角膜神经分支密度等显著降低[87-88, 90-91],亚临床圆锥角膜眼的角膜神经分支密度亦有显著降低[90],平均基质神经直径增加[85],表明圆锥角膜中基底下神经丛的改变可能早于角膜地形的改变。
结语 目前圆锥角膜的早期诊断主要依靠角膜厚度检查、角膜地形图检查包括角膜形态、高度、增强扩张图,以及角膜生物力学检查等,单一指标对于亚临床圆锥角膜的诊断能力通常有限,而多指标或多方法的结合,以及对机器学习等算法的应用,能有效提高异常角膜的检出率,也有益于早期角膜交联手术的开展。目前对于亚临床圆锥角膜的定义和诊断标准尚未统一,也是导致研究结果不一致的重要原因,未来需要更进一步的规范。对于圆锥角膜发生及发展的病理生理机制仍需要进一步探究,以利于疾病的早期筛查及诊断。
作者贡献声明 冼艺勇 论文撰写和修订。沈阳论文指导和修订。赵婧,张晓宇 论文修订。周行涛 论文选题、指导和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
中华医学会眼科学分会角膜病学组. 中国圆锥角膜诊断和治疗专家共识(2019年)[J]. 中华眼科杂志, 2019, 55(12): 891-895. [DOI]
|
[2] |
GODEFROOIJ DA, DE WIT GA, UITERWAAL CS, et al. Age-specific incidence and prevalence of keratoconus: A Nationwide Registration Study[J]. Am J Ophthalmol, 2017, 175: 169-172.
[DOI]
|
[3] |
SEILER T, KOUFALA K, RICHTER G. Iatrogenic keratectasia after laser in situ keratomileusis[J]. J Refract Surg, 1998, 14(3): 312-317.
[DOI]
|
[4] |
HOLLAND SP, SRIVANNABOON S, REINSTEIN DZ. Avoiding serious corneal complications of laser assisted in situ keratomileusis and photorefractive keratectomy[J]. Ophthalmology, 2000, 107(4): 640-652.
[DOI]
|
[5] |
EL-NAGGAR MT. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction[J]. J Cataract Refr Surg, 2015, 41(4): 884-888.
[DOI]
|
[6] |
PAN C, TAN W, SAVINI G, et al. A comparative study of total corneal power using a ray tracing method obtained from 3 different Scheimpflug camera devices[J]. Am J Ophthalmol, 2020, 216: 90-98.
[DOI]
|
[7] |
DOCTOR K, VUNNAVA KP, SHROFF R, et al. Simplifying and understanding various topographic indices for keratoconus using Scheimpflug based topographers[J]. Indian J Ophthalmol, 2020, 68(12): 2732-2743.
[DOI]
|
[8] |
DE LUIS EGUILEOR B, ARRIOLA-VILLALOBOS P, PIJOAN ZUBIZARRETA JI, et al. Multicentre study: reliability and repeatability of Scheimpflug system measurement in keratoconus[J]. Brit J Ophthalmol, 2020, 105(1): 22-26.
|
[9] |
SHETTY R, ARORA V, JAYADEV C, et al. Repeatability and agreement of three Scheimpflug-based imaging systems for measuring anterior segment parameters in keratoconus[J]. Invest Ophth Vis Sci, 2014, 55(8): 5263-5268.
[DOI]
|
[10] |
ANAYOL MA, GÜLER E, YAĞCI R, et al. Comparison of central corneal thickness, thinnest corneal thickness, anterior chamber depth, and simulated keratometry using galilei, Pentacam, and Sirius devices[J]. Cornea, 2014, 33(6): 582-586.
[DOI]
|
[11] |
ROSHDY MMS, WAHBA SS, ELKITKAT RS, et al. Effect of age on Pentacam keratoconus indices[J]. J Ophthalmol, 2018, 2018: 1-6.
|
[12] |
BOYD BM, BAI J, BORGSTROM M, et al. Comparison of Chinese and North American tomographic parameters and the implications for refractive surgery screening[J]. Asia Pac J Ophthalmol (Phila), 2020, 9(2): 117-125.
[DOI]
|
[13] |
DING L, WANG J, NIU L, et al. Pentacam scheimpflug tomography findings in chinese patients with different corneal diameters[J]. J Refract Surg, 2020, 36(10): 688-695.
[DOI]
|
[14] |
ASENA L, ALTıNÖRS DD, CEZAIRLIOĞLU Ş, et al. Effect of dry eye on Scheimpflug imaging of the cornea and elevation data[J]. Can J Ophthalmol, 2017, 52(3): 313-317.
[DOI]
|
[15] |
LEE J, KIM JH, KIM SW. Repeatability of central corneal thickness measurement using rotating Scheimpflug camera in dry and normal eyes[J]. Eye Contact Lens, 2018, 44(Suppl 2): S29-S32.
|
[16] |
YAN Y, ZHOU Y, ZHANG S, et al. Impact of full-incision double-eyelid blepharoplasty on tear film dynamics and dry eye symptoms in young Asian females[J]. Aesthetic Plast Surg, 2020, 44(6): 2109-2116.
[DOI]
|
[17] |
LEE YB, KOH JW, HYON JY, et al. Sleep deprivation reduces tear secretion and impairs the tear film[J]. Invest Ophth Vis Sci, 2014, 55(6): 3525-3531.
[DOI]
|
[18] |
TOPRAK I, YAYLALı V, YILDIRIM C. A combination of topographic and pachymetric parameters in keratoconus diagnosis[J]. Contact Lens Anterio, 2015, 38(5): 357-362.
[DOI]
|
[19] |
SHAJARI M, JAFFARY I, HERRMANN K, et al. Early tomographic changes in the eyes of patients with keratoconus[J]. J Refract Surg, 2018, 34(4): 254-259.
[DOI]
|
[20] |
RABINOWITZ YS. Keratoconus[J]. Surv Ophthalmol, 1998, 42(4): 297-319.
[DOI]
|
[21] |
UÇAKHAN ÖÖ, CETINKOR V, ÖZKAN M, et al. Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes[J]. J Cataract Refr Surg, 2011, 37(6): 1116-1124.
[DOI]
|
[22] |
DE SANCTIS U, ARAGNO V, DALMASSO P, et al. Diagnosis of subclinical keratoconus using posterior elevation measured with 2 different methods[J]. Cornea, 2013, 32(7): 911-915.
[DOI]
|
[23] |
DE SANCTIS U, LOIACONO C, RICHIARDI L, et al. Sensitivity and specificity of posterior corneal elevation measured by pentacam in discriminating keratoconus/subclinical keratoconus[J]. Ophthalmology, 2008, 115(9): 1534-1539.
[DOI]
|
[24] |
MIHÁLTZ K, KOVÁCS I, TAKÁCS Á, et al. Evaluation of keratometric, pachymetric, and elevation parameters of keratoconic corneas with Pentacam[J]. Cornea, 2009, 28(9): 976-980.
[DOI]
|
[25] |
KAMIYA K, ISHII R, SHIMIZU K, et al. Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes with respect to the stage of Amsler-Krumeich classification[J]. Brit J Ophthalmol, 2014, 98(4): 459-463.
[DOI]
|
[26] |
PIÑERO DP, ALIÓ J L, ALESÓN A, et al. Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus[J]. J Cataract Refr Surg, 2010, 36(5): 814-825.
[DOI]
|
[27] |
PRAKASH G, AGARWAL A, MAZHARI AI, et al. A new, pachymetry-based approach for diagnostic cutoffs for normal, suspect and keratoconic cornea[J]. Eye (Lond), 2012, 26(5): 650-657.
[DOI]
|
[28] |
DIENES L, KRÁNITZ K, JUHÁSZ É, et al. Evaluation of intereye corneal asymmetry in patients with keratoconus. A Scheimpflug imaging study[J]. PLoS One, 2014, 9(10): e108882.
[DOI]
|
[29] |
SAHIN A, YILDIRIM N, BASMAK H. Two-year interval changes in Orbscan Ⅱ topography in eyes with keratoconus[J]. J Cataract Refr Surg, 2008, 34(8): 1295-1299.
[DOI]
|
[30] |
KOC M, TEKIN K, KIZILTOPRAK H, et al. Topometric and tomographic evaluation of subclinical keratoconus[J]. Ophthal Epidemiol, 2020, 27(4): 289-297.
[DOI]
|
[31] |
HASHEMI H, BEIRANVAND A, YEKTA A, et al. Pentacam top indices for diagnosing subclinical and definite keratoconus[J]. J Curr Ophthalmol, 2016, 28(1): 21-26.
[DOI]
|
[32] |
HUSEYNLI S, SALGADO-BORGES JE, ALIO JL. Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas[J]. Eur J Ophthalmol, 2018, 28(5): 521-534.
[DOI]
|
[33] |
MUFTUOGLU O, AYAR O, HURMERIC V, et al. Comparison of multimetric D index with keratometric, pachymetric, and posterior elevation parameters in diagnosing subclinical keratoconus in fellow eyes of asymmetric keratoconus patients[J]. J Cataract Refr Surg, 2015, 41(3): 557-565.
[DOI]
|
[34] |
BELIN M, DUNCAN J. Keratoconus: the ABCD grading system[J]. Klin Monbl Augenheilkd, 2016, 233(6): 701-707.
[DOI]
|
[35] |
YOUSEFI A, HASHEMI H, KHANLARI M, et al. Keratometric indices for detecting the type of keratoconus: a combined discriminant analysis[J]. Clin Exp Optom, 2020, 103(4): 463-468.
[DOI]
|
[36] |
AMBRÓSIO RJ, ALONSO RS, LUZ A, et al. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus[J]. J Cataract Refr Surg, 2006, 32(11): 1851-1859.
[DOI]
|
[37] |
AMBRÓSIO RJ, CAIADO ALC, GUERRA F P, et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus[J]. J Refract Surg, 2011, 27(10): 753-758.
[DOI]
|
[38] |
SONG P, YANG K, LI P, et al. Assessment of corneal pachymetry distribution and morphologic changes in subclinical keratoconus with normal biomechanics[J]. Biomed Res Int, 2019, 2019: 1-7.
|
[39] |
BAE GH, KIM JR, KIM CH, et al. Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using pentacam[J]. Am J Ophthalmol, 2014, 157(1): 103-109.
[DOI]
|
[40] |
SHAJARI M, JAFFARY I, HERRMANN K, et al. Early tomographic changes in the eyes of patients with keratoconus[J]. J Refract Surg, 2018, 34(4): 254-259.
[DOI]
|
[41] |
OZALP O, ATALAY E. Belin ABCD progression display identifies keratoconus progression earlier than conventional metrics[J]. Am J Ophthalmol, 2022, 236: 45-52.
[DOI]
|
[42] |
GOMES JAP, TAN D, RAPUANO CJ, et al. Global consensus on keratoconus and ectatic diseases[J]. Cornea, 2015, 34(4): 359-369.
[DOI]
|
[43] |
BELIN MW, MEYER JJ, DUNCAN JK, et al. Assessing progression of keratoconus and cross-linking efficacy: the Belin ABCD progression display[J]. Int J Kerat Ect Cor Dis, 2017, 6(1): 1-10.
|
[44] |
LOPES B, RAMOS I, AMBRÓSIO R J. Corneal densitometry in keratoconus[J]. Cornea, 2014, 33(12): 1282-1286.
[DOI]
|
[45] |
SHEN Y, JIAN W, SUN L, et al. One-year follow-up of changes in corneal densitometry after accelerated (45 mW/cm2) transepithelial corneal collagen cross-linking for keratoconus: a retrospective study[J]. Cornea, 2016, 35(11): 1434-1440.
[DOI]
|
[46] |
KOC M, TEKIN K, TEKIN I, et al. An early finding of keratoconus: increase in corneal densitometry conclusions: the increase in densitometry in the central zone[J]. Cornea, 2018, 37(5): 580-586.
[DOI]
|
[47] |
RUIZ HIDALGO I, ROZEMA JJ, SAAD A, et al. Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods[J]. Cornea, 2017, 36(6): 689-695.
[DOI]
|
[48] |
LOPES BT, RAMOS IC, SALOMÃO MQ, et al. Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence[J]. Am J Ophthalmol, 2018, 195: 223-232.
[DOI]
|
[49] |
ISSARTI I, CONSEJO A, JIMÉNEZ-GARCÍA M, et al. Logistic index for keratoconus detection and severity scoring (Logik)[J]. Comput Biol Med, 2020, 122: 103809.
[DOI]
|
[50] |
XIE Y, ZHAO L, YANG X, et al. Screening candidates for refractive surgery with corneal tomographic-based deep learning[J]. JAMA Ophthalmol, 2020, 138(5): 519-526.
[DOI]
|
[51] |
CAO K, VERSPOOR K, SAHEBJADA S, et al. Evaluating the performance of various machine learning algorithms to detect subclinical keratoconus[J]. Transl Vis Sci Techn, 2020, 9(2): 24.
[DOI]
|
[52] |
AMBRÓSIO RJ, LOPES BT, FARIA-CORREIA F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection[J]. J Refract Surg, 2017, 33(7): 434-443.
[DOI]
|
[53] |
VELLARA HR, PATEL DV. Biomechanical properties of the keratoconic cornea: a review[J]. Clin Exp Optom, 2015, 98(1): 31-38.
[DOI]
|
[54] |
TOUBOUL D, BÉNARD A, MAHMOUD AM, et al. Early biomechanical keratoconus pattern measured with an ocular response analyzer: curve analysis[J]. J Cataract Refr Surg, 2011, 37(12): 2144-2150.
[DOI]
|
[55] |
KIRGIZ A, ERDUR SK, ATALAY K, et al. The role of ocular response analyzer in differentiation of forme fruste keratoconus from corneal astigmatism[J]. Eye Contact Lens, 2019, 45(2): 83-87.
[DOI]
|
[56] |
MOHAMMADPOUR M, ETESAMI I, YAVARI Z, et al. Ocular response analyzer parameters in healthy, keratoconus suspect and manifest keratoconus eyes[J]. Oman J Ophthalmol, 2015, 8(2): 102-106.
[DOI]
|
[57] |
LUZ A, LOPES B, HALLAHAN KM, et al. Discriminant value of custom Ocular Response Analyzer waveform derivatives in forme fruste keratoconus[J]. Am J Ophthalmol, 2016, 164(1): 14-21.
|
[58] |
CAVAS F, PIÑERO D, VELÁZQUEZ JS, et al. Relationship between corneal morphogeometrical properties and biomechanical parameters derived from dynamic bidirectional air applanation measurement procedure in keratoconus[J]. Diagnostics, 2020, 10(9): 640.
[DOI]
|
[59] |
YANG K, XU L, FAN Q, et al. Repeatability and comparison of new Corvis ST parameters in normal and keratoconus eyes[J]. Sci Rep, 2019, 9(1): 15379.
[DOI]
|
[60] |
CATALÁN-LÓPEZ S, CADARSO-SUÁREZ L, LÓPEZ-RATÓN M, et al. Corneal biomechanics in unilateral keratoconus and fellow eyes with a Scheimpflug-based tonometer[J]. Optometry Vision Sci, 2018, 95(7): 608-615.
[DOI]
|
[61] |
VINCIGUERRA R, AMBRÓSIO R, ELSHEIKH A, et al. Detection of keratoconus with a new biomechanical index[J]. J Refract Surg, 2016, 32(12): 803-810.
[DOI]
|
[62] |
YANG K, XU L, FAN Q, et al. Evaluation of new Corvis ST parameters in normal, Post-LASIK, Post-LASIK keratectasia and keratoconus eyes[J]. Sci Rep, 2020, 10(1): 1-9.
[DOI]
|
[63] |
KOC M, AYDEMIR E, TEKIN K, et al. Biomechanical analysis of subclinical keratoconus with normal topographic, topometric, and tomographic Findings[J]. J Refract Surg, 2019, 35(4): 247-252.
[DOI]
|
[64] |
CHAN TCY, WANG YM, YU M, et al. Comparison of corneal tomography and a new combined tomographic biomechanical index in subclinical keratoconus[J]. J Refract Surg, 2018, 34(9): 616-621.
[DOI]
|
[65] |
SALOMÃO MQ, HOFLING-LIMA AL, GOMES ESPORCATTE LP, et al. The role of corneal biomechanics for the evaluation of ectasia patients[J]. Int J Env Res Pub He, 2020, 17(6): 2113.
[DOI]
|
[66] |
ESPORCATTE LPG, SALOMÃO MQ, SENA NBJ, et al. Advanced surface ablation in mild (fruste) keratoconus: a case report[J]. Ophthalmol Ther, 2020, 9(2): 355-363.
[DOI]
|
[67] |
VINCIGUERRA R, ELSHEIKH A, ROBERTS C J, et al. Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients[J]. J Refract Surg, 2016, 32(8): 550-561.
[DOI]
|
[68] |
ELIASY A, CHEN K, VINCIGUERRA R, et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress-strain index[J]. Front Bioeng Biotechnol, 2019, 7: 105.
[DOI]
|
[69] |
ELSHEIKH A, WANG D, PYE D. Determination of the modulus of elasticity of the human cornea[J]. J Refract Surg, 2007, 23(8): 808-818.
[DOI]
|
[70] |
WANG X, MCALINDEN C, ZHANG H, et al. Assessment of corneal biomechanics, tonometry and pachymetry with the Corvis ST in myopia[J]. Sci Rep, 2021, 11(1): 3041.
[DOI]
|
[71] |
LIU G, RONG H, PEI R, et al. Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population[J]. Bmc Ophthalmol, 2020, 20(1): 436.
[DOI]
|
[72] |
MAKLAD O, ELIASY A, CHEN K, et al. Fluid-structure interaction based algorithms for IOP and corneal material behavior[J]. Front Bioeng Biotechnol, 2020, 8: 970.
[DOI]
|
[73] |
SILVERMAN RH, URS R, ROYCHOUDHURY A, et al. Epithelial remodeling as basis for machine-based identification of keratoconus[J]. Invest Ophth Vis Sci, 2014, 55(3): 1580-1587.
[DOI]
|
[74] |
MATALIA H, CHINNAPPAIAH N, CHANDAPURA R, et al. Repeatability of OCT anterior surface and Bowman's layer curvature and aberrations in normal and keratoconic eyes[J]. J Refract Surg, 2020, 36(4): 247-252.
[DOI]
|
[75] |
CHAN TCY, BISWAS S, YU M, et al. Comparison of corneal measurements in keratoconus using swept-source optical coherence tomography and combined Placido-Scheimpflug imaging[J]. Acta Ophthalmol, 2017, 95(6): e486-e494.
[DOI]
|
[76] |
FUJIMOTO H, MAEDA N, SHINTANI A, et al. Quantitative evaluation of the natural progression of keratoconus using three-dimensional optical coherence tomography[J]. Invest Ophth Vis Sci, 2016, 57(9): T169.
[DOI]
|
[77] |
LI Y, CHAMBERLAIN W, TAN O, et al. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography[J]. J Cataract Refr Surg, 2016, 42(2): 284-295.
[DOI]
|
[78] |
KITAZAWA K, ITOI M, YOKOTA I, et al. Involvement of anterior and posterior corneal surface area imbalance in the pathological change of keratoconus[J]. Sci Rep, 2018, 8(1): 1-7.
|
[79] |
PIRCHER N, BEER F, HOLZER S, et al. Large field of view corneal epithelium and bowman's layer thickness maps in keratoconic and healthy eyes[J]. Am J Ophthalmol, 2020, 209: 168-177.
[DOI]
|
[80] |
FUKUDA S, YAMANARI M, LIM Y, et al. Keratoconus diagnosis using anterior segment polarization-sensitive optical coherence tomography[J]. Invest Ophth Vis Sci, 2013, 54(2): 1384.
[DOI]
|
[81] |
XU Z, JIANG J, YANG C, et al. Value of corneal epithelial and Bowman's layer vertical thickness profiles generated by UHR-OCT for sub-clinical keratoconus diagnosis[J]. Sci Rep, 2016, 6(1): 31550.
[DOI]
|
[82] |
BIZHEVA K, TAN B, MACLELAN B, et al. Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas[J]. Biomed Opt Express, 2017, 8(2): 800.
[DOI]
|
[83] |
BITIRGEN G, OZKAGNICI A, MALIK RA, et al. Evaluation of contact lens-induced changes in keratoconic corneas using in vivo confocal microscopy[J]. Invest Ophth Vis Sci, 2013, 54(8): 5385.
[DOI]
|
[84] |
MOCAN MC, YILMAZ PT, IRKEC M, et al. In vivo confocal microscopy for the evaluation of corneal microstructure in keratoconus[J]. Curr Eye Res, 2009, 33(11-12): 933-939.
|
[85] |
OZGURHAN EB, KARA N, YILDIRIM A, et al. Evaluation of corneal microstructure in keratoconus: a confocal microscopy study[J]. Am J Ophthalmol, 2013, 156(5): 885-893.
[DOI]
|
[86] |
EFRON N, HOLLINGSWORTH JG. New perspectives on keratoconus as revealed by corneal confocal microscopy[J]. Clin Exp Optom, 2008, 91(1): 34-55.
[DOI]
|
[87] |
GHOSH S, ABDUL MUTALIB H, KAUR S, et al. Corneal cell morphology in keratoconus: a confocal microscopic observation[J]. Malays J Med Sci, 2017, 24(2): 44-54.
|
[88] |
BITIRGEN G, OZKAGNICI A, BOZKURT R, et al. In vivo corneal confocal microscopic analysis in patients with keratoconus[J]. Int J Ophthalmol-Chi, 2015, 8(3): 534-539.
|
[89] |
PATEL DV, MCGHEE CNJ. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy[J]. Invest Ophth Vis Sci, 2006, 47(4): 1348.
[DOI]
|
[90] |
PAHUJA NK, SHETTY R, NUIJTS RM, et al. An in vivo confocal microscopic study of corneal nerve morphology in unilateral keratoconus[J]. Biomed Res Int, 2016, 2016: 5067853.
|
[91] |
FLOCKERZI E, DAAS L, SEITZ B. Structural changes in the corneal subbasal nerve plexus in keratoconus[J]. Acta Ophthalmol, 2020, 98(8): e928-e932.
|