经典Wnt信号通路在胚胎发育、正常干细胞以及肿瘤细胞的增殖分化中发挥重要作用。当Wnt信号通路处于非激活状态时,胞质内游离的β-连环蛋白(β-catenin)会在胞内降解复合体的作用下持续降解,使其胞内数量处于较低水平。该降解复合体由轴抑制蛋白(Axin)、腺瘤性结肠息肉病(adenomatous polyposis coli,APC)蛋白、酪蛋白激酶(casein kinase-1α,CK-1α)以及糖原合成酶激酶(glycogen synthase kinase-3β,GSK-3β)构成,CK-1α和GSK-3β将β-catenin的S33、S37、S45及T41氨基酸位点磷酸化,使之能够被β-转导素重复序列包含蛋白(β-transducin repeats-containing proteins,β-TrCP)识别并泛素化。泛素化β-catenin最终通过蛋白酶体介导的降解途径降解。当Wnt信号通路处于激活状态时,或当降解复合体因基因突变或其他因素导致其结构功能失常时,降解复合体与细胞膜胞内侧磷酸化的低密度脂蛋白受体相关蛋白5/6(low-density lipoprotein receptor-related protein,LRP5/6)结合,此时β-catenin不能再被β-TrCP识别及进一步降解,从而在胞内不断蓄积并最终向细胞核内转移。进入细胞核内的β-catenin与T细胞因子/淋巴增强因子家族(T-cell factor/lymphoid enhancer factor,TCF/LEF)相关转录因子相结合,并在B细胞淋巴瘤因子9(B-cell CLL/lymphoma 9,BCL-9)、环磷酸腺苷反应元件结合蛋白(cyclic AMP response element binding protein,CREB)的结合蛋白(CREB-binding protein,CBP)以及Pygopus蛋白(Pygopus,Pygo)等蛋白的共同作用下,激活下游靶基因(如MYC和CCND1等)的转录,促进细胞的增殖、分化、转移以及基质金属蛋白酶的分泌[1]。
该信号通路中的核心蛋白分子β-catenin相对分子质量(Mr)为92 000,由N末端的140个氨基酸残基、C末端的反式激活结构域以及二者之间的由12个armadillo(arm)重复序列组成的中心结构域组成。中心的arm重复序列介导β-catenin与细胞骨架蛋白(含有IQ模体的三磷酸鸟苷酶激活蛋白1、α-catenin、E-钙黏蛋白)、转录复合体(TCF、LEFs)以及降解复合体(Axin、APC、GSK-3β)相互作用。N末端和C末端结构域尚未完全解析,有研究表明它们带有的阴性电荷使其能与arm重复序列产生静电作用,并调节对arm结合蛋白的亲和力[2]。正常情况下,β-catenin在细胞内各处的分布处于相对平衡的状态,当Wnt通路激活时,细胞内β-catenin的分布将发生改变,β-catenin进入细胞核并在核内蓄积,招募RNA聚合酶Ⅱ介导转录所需要的中介复合物同时促进组蛋白乙酰转移酶结合并打开染色体,从而募集更多的转录因子聚集到靶基因的启动子上,最终激活Wnt通路靶基因的转录[3]。β-catenin进入细胞核内是其传递下游信号及激活Wnt靶基因转录的重要前提,但其出入细胞核的方式尚未完全解析,细胞膜上、细胞质内、细胞核内的某些分子也会影响其在细胞内的定位。β-catenin在细胞核内外的分布状态是经典Wnt信号通路重要的调控位点以及该通路相关疾病的潜在治疗靶点(图 1)。
β-catenin入核方式
利用经典入核途径关键蛋白直接入核 正常情况下,Mr < 30 000的蛋白能够通过细胞核上的核孔通道直接穿梭于核内外,而Mr > 50 000的蛋白需要通过核孔通道复合体(nuclear pore complex,NPC)主动转运进入核内。NPC由30~50个不同的核孔蛋白(nucleoporin,Nup)组成,而通过NPC主动转运的蛋白基本结构中都含有核定位或核外输信号(nuclear localization or nuclear export signal,NLS/NES)。含有NLS序列的蛋白进入细胞核内通常是通过经典入核途径(也被称作依赖Ran和输入蛋白的入核途径)完成的:在胞质一侧,由输入蛋白α(importin-α)和输入蛋白β(importin-β)组成的NLS序列受体与含有NLS序列的蛋白结合,组成一个输入复合体;输入蛋白α和β通过结合Nup,促使输入复合体移动并穿过NPC;在细胞核内侧,小分子GTP酶Ran与输入蛋白β结合并提供能量,导致输入复合体解离,核外的蛋白最终进入核内,而输入蛋白则重新回到胞质中开始新的转运[4]。
虽然β-catenin缺少NLS/NES序列,但许多研究表明β-catenin的入核仍然利用了上述经典入核途径中一些重要分子,以一种类似输入蛋白β却无输入蛋白α/β复合体参与的方式入核。β-catenin的中央arm结构域与输入蛋白β中心结构域的串联重复序列(HEAT模体)在结构上相似,这些螺旋形的重复序列使得蛋白更易被输入输出蛋白及核孔蛋白的FG重复序列结合,进而协助蛋白穿过NPC[4]。而作为NPC胞质的主要组成部分,Nup358能够为蛋白入核募集并接收输入蛋白β,当其表达被抑制时,β-catenin的入核速率相应减慢[5-6]。因此,β-catenin可能通过一系列与多个核孔蛋白瞬时且连续的相互作用进入细胞核内,而这一入核过程同样需要依靠Ran提供能量[7]。但是也有研究发现,在非洲爪蟾卵胞质中可溶性β-catenin不能直接和核孔蛋白相互作用,这可能是因为蛋白在膜上的直接交互作用易受各种因素调控所致。β-catenin和NPC潜在的直接交互作用还需要进一步研究。
“分子伴侣”入核 由于β-catenin缺乏NLS序列,因此含有NLS序列的蛋白可以作为“分子伴侣”协助其入核。目前发现过表达叉头框蛋白M1(forkhead box protein M1,FOXM1)、黏蛋白1(mucin1,MUC-1)、胰岛素受体底物1(insulin receptor sustrate1,IRS-1)、Smad蛋白3/4(Smad3/4)、BCL-9、雄激素受体(androgen receptor,AR)及含有硫氧还原蛋白结构域蛋白12(thioredoxin domain-containing protein 12,TXNDC12)等,都会促进β-catenin向核内转运[8-9]。Wnt通路下游的TCF/LEF转录因子被发现能够作为β-catenin核内转运的“分子伴侣”,然而目前尚不能确定此种转运入核是依靠自身还是与其结合的蛋白,因此“β-catenin入核分子伴侣”这一说法的严谨性有待商榷[2, 10]。
其他入核途径 除了上述的“直接入核”及“分子伴侣”协助入核途径以外,近年来还发现位于细胞核内的Rap鸟嘌呤核苷酸交换因子5(Rap guanine nucleotide exchange factor 5,RAPGEF5)能够维持细胞核内Rap蛋白与GTP结合的激活状态,激活状态的Rap能够和β-catenin直接结合,激活的Rap1a和Rap1b能够促进β-catenin向核内转运并具有将β-catenin滞留在核内的作用。这被认为是一种新的、不同于常规的依赖Ran和输入蛋白β进入细胞核的新途径[11]。还有研究发现,小分子GTP酶Rho家族成员Ras相关的C3肉毒素底物1(Ras-related C3 botulinum toxin substrate 1,Rac1),在细胞质内激活c-Jun氨基末端激酶2(c-Jun N-terminal kinase 2,JNK2),激活的JNK2对β-catenin的S191和S605位点磷酸化,进而促进其进入细胞核[12]。驱动蛋白2(kinesin-2)和细胞纤毛内转运蛋白A(intraflagellar transport-A,IFT-A)组成的复合体也被发现在β-catenin进入细胞核的过程中发挥必要作用[13]。β-catenin转录后的糖基化修饰也能够促进其向核内转运[14]。上述多种促β-catenin入核的具体机制以及是否存在相应的抑制剂有待进一步研究。
β-catenin出核方式 β-catenin出核的过程同样存在多种机制。与其入核过程类似,由于β-catenin缺少典型的NES序列,其出核过程需要在含有NES序列的分子蛋白协助下完成。此时需要染色体维持区域1(chromosome maintenance region 1,CRM1)(也称作输出蛋白1)的参与,该区域与具有富含亮氨酸的NES序列的蛋白质相结合,以一种消耗能量的方式将蛋白通过核孔转运出核[15]。在这个过程中,Ran负责将待转运的蛋白结合到CRM1受体上,并在穿核的过程中保持与复合体的结合,随后在胞质内解离并回到核内参与新一轮转运。目前已发现Axin、APC、Chibby、多发性内分泌癌蛋白(menin)、p21活化激酶4(p21-activated kinase 4,PAK4)、KN模体和锚蛋白重复结构域1(KN motif and ankyrin repeat domains 1,Kank1)以及亮氨酸拉链肿瘤抑制因子2(leucine zipper tumor suppressor 2,LZTS2)等蛋白的表达上调会导致β-catenin以这种依赖CRM1和Ran的转运方式从细胞核向细胞质内转运,其中一些蛋白正是Wnt信号通路的负性调节因子[8]。这种依赖CRM1的出核方式可以被细霉素B(leptomycin,LMB)阻断,并且引起β-catenin在细胞内含量升高[16]。
β-catenin也可以通过不依赖CRM1和Ran的途径出核。此种非典型的出核方式依靠β-catenin蛋白N末端和C末端的序列完成,而这些序列与典型的NES序列或核外输相关蛋白相比无相似性,因此可能存在特定的尚未解析的作用机制[17]。此外,Ran结合蛋白3(Ran binding protein 3,RanBP-3)也可以通过不依赖CRM1和Ran的方式将β-catenin从核内转移至胞内,其转运机制可能类似于β-catenin直接核内转运,即β-catenin自身直接与核膜相关分子相互作用完成转运[18]。
细胞核内外滞留作用
细胞膜滞留 在细胞膜上,钙黏蛋白与β-catenin相结合,在参与构成细胞间连接的同时,将β-catenin滞留于细胞膜上。如血管内皮钙黏蛋白(vascular-endothelial-cadherin,VE-cadherin)和β-catenin结合并促进内皮细胞连接的稳定,这种作用可被弓形虫破坏,并影响β-catenin在细胞内的定位[19]。N-钙黏蛋白能够和β-catenin结合,N-钙黏蛋白表达上调会显著增加核内外β-catenin及其与β-catenin复合体的数量[20];而当N-钙黏蛋白被蛋白酶水解之后,水解下来的胞质内C末端片段与β-catenin结合形成复合体,该复合体可以进入细胞核内,使β-catenin激活相关靶基因转录[21]。E-钙黏蛋白在细胞膜上与β-catenin结合并参与组成细胞间黏附复合体,通过滞留作用负性调节细胞核内β-catenin含量。在某些细菌感染或肿瘤患者体内,β-catenin受到细菌毒素的作用或在肿瘤微环境中发生酪氨酸磷酸化,从黏附复合体中解离,这不仅破坏了上皮组织的完整性,促进了上皮间质转化的发生(epithelial-mesenchymal transition,EMT),还使更多游离的β-catenin进入细胞核内,异常激活Wnt通路下游靶基因的转录[22]。例如,脆弱拟杆菌毒素(Bacteroides fragilis toxin,BFT),作为一种不耐热的金属蛋白酶,可作用于E-钙黏蛋白的细胞外结构并干扰上皮细胞之间的连接,促使β-catenin与E-钙黏蛋白解离,解离的β-catenin在降解复合体功能受到抑制的情况下进入细胞核内激活下游转录[23]。此外,副猪嗜血杆菌(Haemophilus parasuis)能够削弱E-钙黏蛋白与β-catenin之间的作用[24];绿脓杆菌凝集素B(Lectin B,LecB)能够破环β-catenin在细胞膜上与α1β3整合素的结合[25]。除此之外,有研究发现β-catenin在多种类型乳腺癌患者的癌组织中表达量升高,并且细胞内β-catenin含量升高与更高的肿瘤分期及更差的预后结局相关[26-27]。乳腺癌细胞内β-catenin含量增高主要来自于细胞膜上的解离,这在晚期以及高侵袭性乳腺癌细胞中更为常见[28]。在三阴性乳腺癌细胞中,人PDZ和LIM结构域蛋白1(PDZ and LIM domain protein 1,PDLIM1)在胞质内的蓄积能够增加核内具有活性的β-catenin,这正是通过促进β-catenin从细胞膜上解离,并将其在S675位点磷酸化,最终促进其入核蓄积而实现的[29]。
细胞质内滞留 在细胞质内,一些分子通过与β-catenin结合将其滞留于胞内。在对外胚层胚胎干细胞分化过程的研究中发现,细胞外信号调节蛋白激酶(extracellular signal-regulated protein kinase,ERK)信号通路的小分子抑制剂PD0325901能够促进β-catenin在胞质内滞留,增加胞质内β-catenin含量而减少其核内含量,同时上调E-钙黏蛋白表达[30]。同样,在胚胎干细胞胞质内,具有PDZ结合模体的转录共激活因子(transcriptional co-activator with PDZ-binding motif,TAZ)能够与β-catenin相结合并促进干细胞自我更新。此过程不需要β-catenin进入细胞核内发挥转录激活作用,但需要二者在胞质内结合,同样提示一定的胞质内滞留作用[31]。Wnt通路下游产物裸角质膜同源蛋白1(naked cuticle homolog 1,NKD1)能通过与β-catenin结合抑制其进入核内,提示其介导了一种通路负反馈调节机制以及对β-catenin的胞内滞留作用[32]。
β-catenin胞内降解复合体的主要组成成分Axin及APC也有滞留作用,内源性Axin和APC都能和核内TCF/LEF竞争性结合β-catenin,增加其出核及在胞质内的相对含量[33-34]。细胞内Axin含量受E3泛素连接酶RNF146(ring finger protein 146)调控,它可以将Axin泛素化并进一步被蛋白酶体降解[35];而RNF146又受到端粒酶的别构激活[36]。因此,端粒酶抑制剂(如端粒酶抑制剂XAV939)能够稳定Axin的表达,使其胞内浓度上升。此外,一种多酚类类黄酮天然化合物漆黄素(fisetin)也能够增加内源性Axin表达[37]。Axin含量增加不仅能够增加其细胞质内滞留β-catenin的作用,同时还会增加以其为主体的降解复合体的形成,从而使得β-catenin降解增多。多种端粒酶抑制剂正是通过这种增加Axin降解复合体的降解作用来抑制通路,而单纯通过增加Axin核内滞留作用抑制β-catenin的入核及下游信号传递并不多见[38]。在慢性粒细胞白血病细胞中,BCR-ABL融合蛋白能使β-catenin的Y86和Y654位点酪氨酸磷酸化,与胞质内的Axin结合相比,β-catenin更易与核内的TCF4结合,从而减弱了Axin对β-catenin的滞留作用,增加了其入核及激活下游转录作用[39]。其他酪氨酸激酶,如FMS样的酪氨酸激酶3(Fms-like tyrosine kinase,FLT3)和KIT在造血细胞中也有类似作用[40-41]。
细胞核内滞留 在细胞核内,β-catenin通过与TCF/L、BCL-9、Pygo以及CBP等转录因子相作用激活下游靶基因的转录[42]。其中BCL-9以及Pygo不仅能够与β-catenin结合,还具有将其留在细胞核内的作用,这种滞留作用进一步交由TCF4实现并限制其在核内的移动[33]。当BCL-9表达被抑制时,β-catenin滞留在核内的作用被削弱,而更易与E-钙黏蛋白结合并滞留在细胞膜表面[43]。LEF1在Wnt信号的刺激下可直接和APC及E-钙黏蛋白竞争结合β-catenin的arm重复结构域,减少β-catenin出核而增加其入核。当Wnt通路激活时,β-catenin在细胞质内含量增加,并进入细胞核内,在染色体区域与LEF1结合,并反式激活Wnt通路相关基因的表达,其中就包括LEF1,而LEF1的增加进一步使β-catenin在核内稳定积聚,使LEF1的表达及募集β-catenin入核的过程成为正反馈循环[44-45]。Wnt通路的下游靶基因MYC能够与LEF1启动子区域直接结合并且促进其转录,进一步增加β-catenin在核内聚集[16]。此外,β-catenin还能在多种肿瘤细胞中与Twa1/Gid8、Yes相关蛋白1(Yes-associated protein 1,YAP1)及T-box转录因子5(T-box transcription factor,TBX5)等蛋白在核内结合形成复合物,提示这些蛋白对β-catenin有一定的核内滞留作用[46-47]。在成骨细胞中,肽基脯氨酸顺反异构酶1(peptidyl-prolyl cis-trans isomerase NIMA-interacting 1,Pin1)能够在细胞核内直接和β-catenin结合并将其异构化,异构化后的β-catenin在核内不能与能够驱使其出核的APC结合,最终β-catenin滞留于核内[48]。在结直肠癌患者中,β-catenin在细胞核内的含量显著升高,并且核内β-catenin含量增高与患者较差的预后结局密切相关[49]。在化学药物诱导的肝母细胞瘤小鼠模型中,也发现β-catenin在细胞核内含量显著增高[50]。而在宫颈鳞状细胞癌患者中,β-catenin在细胞核内的含量增高,不仅与患者不良预后相关,还与患者放化疗耐药密切相关[51]。
β-catenin细胞内亚定位相关治疗靶点
通过β-catenin出入细胞核途径减少核内含量 对于β-catenin直接入核途经,目前已发现两种多肽抑制剂(Bimax-1和Bimax-2)能够和输入蛋白β结合并抑制其在细胞核内侧释放待转运的蛋白[52]。有研究鉴定出一种输入蛋白β的小分子拟肽类抑制剂58H5-6,结构类似于核孔蛋白的FG序列,能够和NPC竞争结合输入蛋白β;而同时β-catenin的arm重复序列和输入蛋白β的HEAT模体结构相似,因此58H5-6可以进一步影响β-catenin入核[53]。此外,还发现入核受体抑制剂(importazole,IPZ)干扰输入蛋白β和Ran的结合[54-55];多克隆抗体Mab414(抗-Nup107抗体)和RL2(抗-O-linked N-acetylglucosamine抗体)直接和核孔蛋白的FG序列结合,从而阻断核孔蛋白介导的转运;麦胚凝集素(wheat germ agglutinin,WGA)通过糖修饰的核孔蛋白直接与NPC结合并阻断通道中心[56]。然而,上述物质抑制蛋白入核的作用缺乏特异性,针对某些特定的核孔蛋白阻断β-catenin入核是更有价值的研究方向。对于前文提到的协助β-catenin进入细胞核内的各类“分子伴侣”、通过不依赖CRM1和Ran的方式协助β-catenin出核的RanBP-3以及其他β-catenin出入核途径关键蛋白等,虽然目前相关临床研究较少,但将它们作为潜在的治疗靶点有很好的应用前景,值得深入研究。
增加β-catenin的核外滞留并减少核内滞留 如前所述,E-钙黏蛋白通过与β-catenin结合将其滞留在细胞膜上,已有研究发现活化的维生素D(即1,25-二羟维生素D3)能够促进β-catenin与维生素D受体结合,同时增加E-钙黏蛋白的表达,增加β-catenin在细胞膜上的滞留,细胞核内能够与TCF/LEF转录因子结合的β-catenin含量减少[57]。有研究证实,结直肠癌患者体内血浆1,25-二羟维生素D3含量升高提示更低的患病风险以及更好的预后结果[58-59];而在进展期结直肠癌患者中,尤其是黑人和女性患者中,维生素D缺陷的存在更为普遍[60]。目前,一项随机、多中心、双盲、临床三期试验正在研究比较维生素D3结合XELOX/mFOLFOX化疗方案与单独XELOX/mFOLFOX方案,作为未接受过治疗的进展期或已发生转移的结直肠癌患者的一线化疗方案谁更为有效,该项研究对于提高晚期结直肠癌患者治疗疗效有重要意义[61]。
某些天然化合物对于β-catenin的核内滞留作用有抑制效果。低浓度白藜芦醇(resveratrol)在结肠细胞中能够显著减少β-catenin在细胞核内的含量,同时降低细胞核内两个重要的β-catenin滞留因子legless(lgs)和pygo的表达[62]。姜黄素(curcumin)能够显著降低细胞核内β-catenin含量,而对胞质内的含量不产生明显影响。这些天然化合物可能具有通过减少β-catenin核内滞留作用而抑制其介导的信号传递作用[63-64]。
一些酪氨酸或苏氨酸激酶对β-catenin特定位点的磷酸化对其在细胞核内外的滞留状态的改变有重要的调节作用。在细胞膜上,表皮生长因子(epidermal growth factor receptor,EGFR)对β-catenin的Y654位点的磷酸化能够抑制E-钙黏蛋白与β-catenin之间的结合,使β-catenin更易与核内转录因子CBP、TCF4等结合。与此类似,β-catenin在细胞膜附近通过Y142位点与α-catenin结合,当Y142位点被酪氨酸激酶Met(tyrosine-protein kinase Met,c-Met)磷酸化时,β-catenin与α-catenin之间的结合减弱,转而更易与核内转录因子BCL-9结合[65]。在细胞质内无Wnt信号刺激时,β-catenin被CK-1α及GSK-3β磷酸化是其被β-TrCP及蛋白酶体降解的前提;当胞内CK-1α及GSK-3β磷酸化作用受到抑制时,β-catenin在胞内不能正常降解,进一步导致其在胞内蓄积以及向核内转运。在细胞核内,蛋白激酶A(protein kinase A,PKA)和蛋白激酶B(protein kinase B,PKB)能够将β-catenin的S552和S675位点磷酸化,增强β-catenin与TCF之间的作用,进而增强将其滞留于核内的作用[66-67]。在慢性粒细胞白血病、结直肠肿瘤、宫颈肿瘤等疾病中,上述关键酪氨酸/苏氨酸磷酸化位点的突变或者酪氨酸/苏氨酸激酶活性的改变能够减少β-catenin入核,进而阻止β-catenin介导的信号转递功能,抑制肿瘤细胞增殖发展[51]。
结语 Wnt/β-catenin信号通路的异常激活存在于多种疾病中,对于阻断该信号通路,目前研究主要聚焦于阻断细胞膜上信号接收(配体与受体)、促进细胞质内β-catenin降解(降解复合体)和抑制细胞核内转录(转录复合体)[68]。由于β-catenin进入细胞核是激活下游信号通路促进靶基因转录的必要前提,而其在细胞核内外的分布受到核膜上及核内外多种因素的影响,因此除上述调控方式以外,在不改变细胞内总量的情况下,减少其入核及核内滞留作用、增加其出核及核外滞留作用,同样能够起到阻断Wnt/β-catenin信号通路的效果,也是潜在的治疗该通路相关疾病的有效途径,值得更多关注。
作者贡献声明 顾嘉伟 文献调研和整理,论文构思、设计和撰写,绘制图片。牛耿明 可行性分析,论文指导和修订。柯重伟 获取资助,论文指导和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
NUSSE R, CLEVERS H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
[DOI]
|
[2] |
JAMIESON C, SHARMA M, HENDERSON B. Targeting the β-catenin nuclear transport pathway in cancer[J]. Semin Cancer Biol, 2014, 27: 20-29.
[DOI]
|
[3] |
KIM S, XU X, HECHT A, et al. Mediator is a transducer of Wnt/beta-catenin signaling[J]. J Biol Chem, 2006, 281(20): 14066-14075.
[DOI]
|
[4] |
STEWART M. Molecular mechanism of the nuclear protein import cycle[J]. Nat Rev Mol Cell Bio, 2007, 8(3): 195-208.
[DOI]
|
[5] |
WäLDE S, THAKAR K, HUTTEN S, et al. The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner[J]. Traffic, 2012, 13(2): 218-233.
[DOI]
|
[6] |
HAMADA M, HAEGER A, JEGANATHAN K, et al. Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability[J]. J Mol Cell Biol, 2011, 194(4): 597-612.
|
[7] |
FAGOTTO F, GLÜCK U, GUMBINER B. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin[J]. Curr Biol, 1998, 8(4): 181-190.
[DOI]
|
[8] |
MORGAN R, RIDSDALE J, TONKS A, et al. Factors affecting the nuclear localization of β-catenin in normal and malignant tissue[J]. J Cell Biochem, 2014, 115(8): 1351-1361.
[DOI]
|
[9] |
YUAN K, XIE K, LAN T, et al. TXNDC12 promotes EMT and metastasis of hepatocellular carcinoma cells via activation of β-catenin[J]. Cell Death Differ, 2020, 27(4): 1355-1368.
[DOI]
|
[10] |
ASALLY M, YONEDA Y. Beta-catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1)[J]. Exp Cell Res, 2005, 308(2): 357-363.
[DOI]
|
[11] |
GRIFFIN JN, DEL VISO F, DUNCAN AR, et al. RAPGEF5 regulates nuclear translocation of β-catenin[J]. Dev Cell, 2018, 44(2): 248-260.e4.
[DOI]
|
[12] |
WU X, TU X, JOENG K, et al. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling[J]. Cell, 2008, 133(2): 340-353.
[DOI]
|
[13] |
VUONG L, IOMINI C, BALMER S, et al. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling[J]. Nat Commun, 2018, 9(1): 5304.
[DOI]
|
[14] |
SAYAT R, LEBER B, GRUBAC V, et al. O-GlcNAc-glycosylation of beta-catenin regulates its nuclear localization and transcriptional activity[J]. Exp Cell Res, 2008, 314(15): 2774-2787.
[DOI]
|
[15] |
HUTTEN S, KEHLENBACH R. CRM1-mediated nuclear export: to the pore and beyond[J]. Trends Cell Biol, 2007, 17(4): 193-201.
[DOI]
|
[16] |
HAO Y, LAFITA-NAVARRO M, ZACHARIAS L, et al. Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation[J]. Cell Commun Signal, 2019, 17(1): 129.
[DOI]
|
[17] |
WIECHENS N, FAGOTTO F. CRM1- and Ran-independent nuclear export of beta-catenin[J]. Curr Biol, 2001, 11(1): 18-27.
[DOI]
|
[18] |
HENDRIKSEN J, FAGOTTO F, VAN DER VELDE H, et al. RanBP3 enhances nuclear export of active (beta)-catenin independently of CRM1[J]. J Cell Biol, 2005, 171(5): 785-797.
[DOI]
|
[19] |
FRANKLIN-MURRAY A, MALLYA S, JANKEEL A, et al. Toxoplasma gondii dysregulates barrier function and mechanotransduction signaling in human endothelial cells[J]. mSphere, 2020, 5(1): e00550-19.
|
[20] |
YAN W, LIN C, GUO Y, et al. N-cadherin overexpression mobilizes the protective effects of mesenchymal stromal cells against ischemic heart injury through a β-catenin-dependent manner[J]. Circ Res, 2020, 126(7): 857-874.
[DOI]
|
[21] |
NADANAKA S, KINOUCHI H, KITAGAWA H. Chondroitin sulfate-mediated N-cadherin/β-catenin signaling is associated with basal-like breast cancer cell invasion[J]. J Bio Chem, 2018, 293(2): 444-465.
[DOI]
|
[22] |
LE S, YU M, YAN J. Phosphorylation reduces the mechanical stability of the α-catenin/β-catenin complex[J]. Angew Chem Int Ed Engl, 2019, 58(51): 18663-18669.
[DOI]
|
[23] |
SILVA-GARCÍA O, VALDEZ-ALARCóN J, BAIZABAL-AGUIRRE V. Wnt/β-catenin signaling as a molecular target by pathogenic bacteria[J]. Front Immunol, 2019, 10: 2135.
[DOI]
|
[24] |
HUA K, LI Y, ZHOU H, et al. Haemophilus parasuis infection disrupts adherens junctions and initializes EMT dependent on canonical Wnt/β-catenin signaling pathway[J]. Front Cell Infect Microbiol, 2018, 8: 324.
[DOI]
|
[25] |
COTT C, THUENAUER R, LANDI A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation[J]. Biochim Biophys Acta, 2016, 1863: 1106-1118.
[DOI]
|
[26] |
LIN S, XIA W, WANG J, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression[J]. P Natl Acad SCI USA, 2000, 97(8): 4262-4266.
[DOI]
|
[27] |
ZELJKO M, PECINA-SLAUS N, MARTIC T, et al. Molecular alterations of E-cadherin and beta-catenin in brain metastases[J]. Front Biosci, 2011, 3: 616-624.
|
[28] |
PRASAD C, MIRZA S, SHARMA G, et al. Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast[J]. Life Sci, 2008, 83: 318-325.
[DOI]
|
[29] |
COX O, EDMUNDS S, SIMON-KELLER K, et al. PDLIM2 is a marker of adhesion and β-catenin activity in triple-negative breast cancer[J]. Cancer Res, 2019, 79(10): 2619-2633.
[DOI]
|
[30] |
YU Y, WANG X, ZHANG X, et al. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast[J]. Stem Cell Res Ther, 2018, 9(1): 2.
[DOI]
|
[31] |
ZHOU X, CHADAREVIAN J, RUIZ B, et al. Cytoplasmic and nuclear TAZ exert distinct functions in regulating primed pluripotency[J]. Stem Cell Reports, 2017, 9(3): 732-741.
[DOI]
|
[32] |
STEINHART Z, ANGERS S. Wnt signaling in development and tissue homeostasis[J]. Development, 2018, 145(11): dev146589.
[DOI]
|
[33] |
KRIEGHOFF E, BEHRENS J, MAYR B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention[J]. J Cell Sci, 2006, 119: 1453-1463.
[DOI]
|
[34] |
AOKI K, TAKETO M. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene[J]. J Cell Sci, 2007, 120: 3327-3335.
[DOI]
|
[35] |
ZHANG Y, LIU S, MICKANIN C, et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling[J]. Nat Cell Biol, 2011, 13(5): 623-629.
[DOI]
|
[36] |
DAROSA P, WANG Z, JIANG X, et al. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal[J]. Nature, 2015, 517(7533): 223-226.
[DOI]
|
[37] |
HE J, ZHANG J, DONG L, et al. Dihydromyricetin attenuates metabolic syndrome and improves insulin sensitivity by upregulating insulin receptor substrate-1 (Y612) tyrosine phosphorylation in db/db mice[J]. Diabetes Metab Syndr Obes, 2019, 12: 2237-2249.
[DOI]
|
[38] |
HUANG S, MISHINA Y, LIU S, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling[J]. Nature, 2009, 461(7264): 614-620.
[DOI]
|
[39] |
COLUCCIA A, VACCA A, DUñACH M, et al. Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation[J]. Embo J, 2007, 26(5): 1456-1466.
[DOI]
|
[40] |
KAJIGUCHI T, CHUNG E, LEE S, et al. FLT3 regulates beta-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells[J]. Leukemia, 2007, 21(12): 2476-2484.
[DOI]
|
[41] |
KAJIGUCHI T, LEE S, LEE M, et al. KIT regulates tyrosine phosphorylation and nuclear localization of beta-catenin in mast cell leukemia[J]. Leukemia Res, 2008, 32(5): 761-770.
[DOI]
|
[42] |
ANTHONY CC, ROBBINS DJ, AHMED Y, et al. Nuclear regulation of Wnt/β-catenin signaling: it's a complex situation[J]. Genes (Basel), 2020, 11(8): 886.
[DOI]
|
[43] |
MIESZCZANEK J, VAN TIENEN L, IBRAHIM A, et al. Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models[J]. Nat Commun, 2019, 10(1): 724.
[DOI]
|
[44] |
HENDERSON B, GALEA M, SCHUECHNER S, et al. Lymphoid enhancer factor-1 blocks adenomatous polyposis coli-mediated nuclear export and degradation of beta-catenin.Regulation by histone deacetylase 1[J]. J Biol Chem, 2002, 277(27): 24258-24264.
[DOI]
|
[45] |
MORGAN R, RIDSDALE J, PAYNE M, et al. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells[J]. Haematologica, 2019, 104(7): 1365-1377.
[DOI]
|
[46] |
LU Y, XIE S, ZHANG W, et al. Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis[J]. Cell Res, 2017, 27(12): 1422-1440.
[DOI]
|
[47] |
ROSENBLUH J, NIJHAWAN D, COX A, et al. β-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis[J]. Cell, 2012, 151(7): 1457-1473.
[DOI]
|
[48] |
SHIN H, ISLAM R, YOON W, et al. Pin1-mediated modification prolongs the nuclear retention of β-catenin in Wnt3a-induced osteoblast differentiation[J]. J Biol Chem, 2016, 291(11): 5555-5565.
[DOI]
|
[49] |
BALDUS S, MÖNIG S, HUXEL S, et al. MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis[J]. Clin Cancer Res, 2004, 10(8): 2790-2796.
[DOI]
|
[50] |
ANNA C, ⅡDA M, SILLS R, et al. Expression of potential beta-catenin targets, cyclin D1, c-Jun, c-Myc, E-cadherin, and EGFR in chemically induced hepatocellular neoplasms from B6C3F1 mice[J]. Toxicol Appl Pharm, 2003, 190(2): 135-145.
[DOI]
|
[51] |
WANG B, LI X, LIU L, et al. β-catenin: oncogenic role and therapeutic target in cervical cancer[J]. Biol Res, 2020, 53(1): 33.
[DOI]
|
[52] |
KOSUGI S, HASEBE M, ENTANI T, et al. Design of peptide inhibitors for the importin alpha/beta nuclear import pathway by activity-based profiling[J]. Chem Biol, 2008, 15(9): 940-949.
[DOI]
|
[53] |
AMBRUS G, WHITBY L, SINGER E, et al. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport[J]. Bioorgan Med Chem, 2010, 18(21): 7611-7620.
[DOI]
|
[54] |
HINTERSTEINER M, AMBRUS G, BEDNENKO J, et al. Identification of a small molecule inhibitor of importin β mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries[J]. ACS Chem Biol, 2010, 5(10): 967-979.
[DOI]
|
[55] |
SODERHOLM J, BIRD S, KALAB P, et al. Importazole, a small molecule inhibitor of the transport receptor importin-β[J]. ACS Chem Biol, 2011, 6(7): 700-708.
[DOI]
|
[56] |
GASIOROWSKI J, DEAN D. Mechanisms of nuclear transport and interventions[J]. Adv Drug Deliver Rev, 2003, 55(6): 703-716.
[DOI]
|
[57] |
PÁLMER H, GONZáLEZ-SANCHO J, ESPADA J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling[J]. J Cell Biol, 2001, 154(2): 369-387.
[DOI]
|
[58] |
NG K, MEYERHARDT J, WU K, et al. Circulating 25-hydroxyvitamin d levels and survival in patients with colorectal cancer[J]. J Clin Oncol, 2008, 26(18): 2984-2991.
[DOI]
|
[59] |
NG K, WOLPIN B, MEYERHARDT J, et al. Prospective study of predictors of vitamin D status and survival in patients with colorectal cancer[J]. Brit J Cancer, 2009, 101(6): 916-923.
[DOI]
|
[60] |
NG K, SARGENT D, GOLDBERG R, et al. Vitamin D status in patients with stage Ⅳ colorectal cancer: findings from intergroup trial N9741[J]. J Clin Oncol, 2011, 29(12): 1599-1606.
[DOI]
|
[61] |
SHERMAN M, YU R, ENGLE D, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy[J]. Cell, 2014, 159(1): 80-93.
[DOI]
|
[62] |
HOPE C, PLANUTIS K, PLANUTIENE M, et al. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention[J]. Mol Nutr Food Res, 2008, S52-S61.
|
[63] |
LEOW P, TIAN Q, ONG Z, et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells[J]. Invest New Drug, 2010, 28(6): 766-782.
[DOI]
|
[64] |
MUKHERJEE S, MAZUMDAR M, CHAKRABORTY S, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop[J]. Stem Cell Res Ther, 2014, 5(5): 116.
[DOI]
|
[65] |
DAUGHERTY R, GOTTARDI C. Phospho-regulation of beta-catenin adhesion and signaling functions[J]. Physiology, 2007, 22: 303-309.
[DOI]
|
[66] |
BREMBECK F, SCHWARZ-ROMOND T, BAKKERS J, et al. Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions[J]. Gene Dev, 2004, 18(18): 2225-2230.
[DOI]
|
[67] |
TAURIN S, SANDBO N, QIN Y, et al. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase[J]. J Biol Chem, 2006, 281(15): 9971-9976.
[DOI]
|
[68] |
GAMMONS M, BIENZ M. Multiprotein complexes governing Wnt signal transduction[J]. Curr Opin Cell Biol, 2018, 51: 42-49.
[DOI]
|