2. 清华大学附属北京清华长庚医院重症医学科 北京 102218
2. Department of Critical Care Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是以持续气流受限为特征的慢性炎症疾病,吸烟、空气污染是主要的诱发因素[1]。香烟烟雾等使树突状细胞(dendritic cell,DC)在气道上皮下大量聚集,活化的T细胞和B细胞在肺内克隆增生,引起免疫炎症反应[2],其中CD4+T细胞在COPD发病中的作用逐渐受到重视。外周血中未经抗原刺激的naïve CD4+T细胞在识别抗原后活化、增殖并分化为不同的功能亚群,如辅助性T淋巴细胞(helper T lymphocyte,Th)和调节性T淋巴细胞(regulatory T lymphocyte,Treg),到达肺部介导多种炎症介质的释放,导致气道炎症和肺气肿。辅助性T淋巴细胞17(T-helper 17,Th17)作为Th细胞的一个亚群,主要分泌促炎细胞因子,介导嗜中性粒细胞气道炎症;Treg则具有免疫抑制功能,Th17/Treg的平衡影响气道-肺炎症和COPD的发展。
Th17/Treg概述 Th17细胞产生IL-17A、IL-17F和IL-22,这些细胞因子通过诱导上皮细胞产生抗菌肽,促进黏膜防御细胞外细菌和真菌感染;同时通过诱导趋化因子招募中性粒细胞,加重炎症反应[3]。Th17细胞的分化和致病作用受众多胞内外信号的调控。蛋白质信号转导和转录激活因子3(signal transduction and transcription activator 3,STAT3)在T细胞抗原受体/共刺激信号以及转化生长因子β(transforming growth factor-β,TGF-β)和IL-6的刺激下被激活,上调维甲酸相关孤核受体γ(retinoid-related orphan receptors-γt,RORγt)和α(RORα)的表达,促使CD4+T细胞向Th17亚群分化。IL-2是Th17分化的关键阻遏物,IL-2通过激活STAT5抑制Th17产生IL-17A。
Treg最初被定义为高表达CD25(IL-2受体的α亚基)的CD4+T细胞,需要持续的IL-2信号刺激维持体内平衡和功能。叉头盒蛋白P3(forkhead box protein P3,FOXP3)是Treg细胞特异性的转录调控因子,对CD4+ CD25+ Tregs的发育和功能发挥有重要促进作用。Miyara等[4]将人Treg细胞分为3个功能和表型独立的亚群:CD45RA+ FOXP3low静息细胞(rTreg)、CD45RA- FOXP3high活化细胞(aTreg)、CD45RA- FOXP3low细胞。aTreg亚群细胞高表达FOXP3和CD25,具有高免疫抑制能力。
已知活化的Treg细胞主要通过释放颗粒酶A和穿孔素杀死效应细胞或抗原提呈细胞,或通过细胞毒性T淋巴细胞相关抗原4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)、CD80和/或CD86对效应细胞和抗原提呈细胞进行功能调节,也可通过分泌抗炎因子IL-10和TGF-β抑制DC和T细胞的功能。Akkaya等[5]发现抗原特异性Tregs细胞还可消耗DC表面的肽-主要组织相容性复合物Ⅱ类(peptide-MHC class Ⅱ molecules,pMHCⅡ)而下调DC的抗原呈递功能,抑制免疫反应。
Th17与COPD 影响Th17细胞分化的上游机制和Th17主要通过分泌IL-17A影响下游靶基因的表达,参与COPD的发病过程;Th17还使机体发挥防御胞外细菌和真菌感染的作用,减少COPD的急性加重。
影响Th17分化的上游分子机制 Pu等[6]发现在COPD实验模型中,烟雾暴露可通过Toll样受体2(Toll-like receptor 2,TLR2)显著增强DC的成熟和活化,导致大鼠出现Th17反应和肺气肿。He等[7]在烟雾诱导的COPD模型小鼠中,发现miR-21/Smad7/TGF-β通路可诱导Th17分化,参与COPD的发病。
IL-17A诱导COPD发病的机制 IL-17A可通过激活IκB激酶抑制剂α(IκB kinase-α,IKK-α)诱导胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP)表达,促进COPD的气道炎症[8];以自分泌方式作用于局部气道,放大炎症并增加COPD的黏液产生[9];增加P53及其下游糖蛋白纤溶酶原激活物抑制剂1(plasminogen activator inhibitor-1,PAI-1)的表达,导致COPD患者CXC型趋化因子配体1和2(CXC chemokine ligand,CXCL1 and CXCL2)和趋化因子受体2(CXC chemokine receptor 2,CXCR2)升高,促进肺泡上皮细胞凋亡和肺损伤[10-11];增强TGF-β1的水平,抑制炎症相关介质或炎症细胞自噬,促进气道重塑[11];诱导中性粒细胞趋化因子,如IL-8、粒细胞集落刺激因子(granulocyte-colony-stimulating factor,G-CSF)和CXCL2的表达,募集中性粒细胞至炎症病灶,分泌更多的中性粒细胞弹性蛋白酶和髓过氧化物酶,破坏肺泡壁,引起肺气肿。
IL-17A使机体发挥防御胞外细菌和真菌感染的作用,可能有助于防止COPD急性发作或发生肺炎等并发症。Geng等[12]发现,与单纯COPD患者相比,COPD合并侵袭性肺曲霉菌病(invasive pulmonary aspergillosis,IPA)患者外周血中RORγt、IL-17A水平更高;然而在COPD合并IPA的小鼠中敲除IL-17A基因,曲霉菌负荷几乎是COPD合并IPA的2倍,IL-17A的缺失加重了COPD合并IPA的进展。
IL-17A水平可预测COPD病情严重程度及类固醇抵抗 Zou等[13]发现COPD急性加重期(acute exacerbation COPD,AECOPD)患者血清IL-17A明显高于稳定期COPD患者和健康人,血清IL-17A水平与超敏C反应蛋白和中性粒细胞百分比正相关,与1秒用力呼吸容量预计值(FEV1%pred)负相关。Kubysheva等[14]的研究共纳入58名COPD患者,并对其进行为期2年的随访,其研究结果显示,在COPD患者中血清IL-17A水平随疾病严重程度增加而升高,肺功能GOLD Ⅳ级的COPD患者其血清IL-17A水平最高,血清IL-17A水平与FEV1%pred和用力肺活量(forced vital capacity,FVC)负相关。Li等[15]共招募87名稳定期COPD患者、24名AECOPD患者及29名健康对照,同样得出IL-17A与肺功能负相关,与患者临床症状和恶化正相关。因此,IL-17A升高可作为COPD患者持续嗜中性气道炎症和病情严重程度的标志。
Christenson等[16]进一步分析了GLUCOLD数据集中49名进行了支气管镜活检患者的临床资料,结果显示与安慰剂组相比,吸入性糖皮质激素(inhaled corticosteroid,ICS)治疗组中部分患者的1秒用力呼吸容量(forced expiratory volume in one second,FEV1)改善,部分恶化,其中前者与气道上皮中IL-17A低水平相关,后者与气道上皮中IL-17A高水平相关,证明气道上皮IL-17A升高与COPD患者的类固醇抵抗相关,且IL-17A与ICS之间的相互作用不受气道嗜酸性粒细胞的影响。
Treg与COPD Treg及其亚群的细胞数量减少或功能缺陷与COPD患者肺功能减退、病情进展有关。Treg细胞除免疫抑制作用外,在COPD中还发挥促炎和促纤维化作用。
Treg及其亚群的数量和功能与病情严重程度负相关 Ström等[17]发现肺功能快速下降的COPD患者肺泡灌洗液中Treg细胞数量较低。Chiappori等[18]证明外周血Treg细胞数量的降低与肺功能下降有关。Bruzzaniti等[19]发现,与肺功能GOLD Ⅲ和Ⅳ级的COPD患者相比,肺功能GOLD Ⅱ级的COPD患者外周血CD4+ FoxP3-all+和CD4+ FoxP3-E2+ pTreg亚群细胞数量更多,CD4+ FoxP3+Treg和CD4+ FoxP3-E2+ pTreg的数量与肺功能呈正相关。COPD患者iTreg亚群的抑制功能随病情进展而逐渐下降。
Treg细胞的促炎及促纤维化作用 CD4+ CD25- Foxp3+ Treg在促炎环境下可促进CD4+T向Th17转化,加重COPD炎症反应。Wu等[20]观察到循环CD4+ CD25- Foxp3+ Treg细胞在稳定型COPD患者中显著增加,且可能是COPD患者持续性气道炎症的原因;TGF-β1可以降低CD25的表达,诱导CD4+ CD25+ Foxp3+ Treg细胞生成CD4+ CD25- Foxp3+ Treg细胞。Sandra等[21]的研究表明,Treg细胞可通过TGF-β自分泌信号通路高表达血小板衍生生长因子-B(platelet-derived growth factor-B,PDGF-B),促进肺纤维化。
综上所述,尽管Th17和Treg的主要作用是对抗的,但在某些情况下发挥协同作用,说明COPD发病机制的复杂性;Th17/Treg失衡与COPD有更密切的作用。
Th17/Treg失衡与COPD COPD患者体内存在Th17、Treg细胞数量及比例的异常,吸烟引起COPD患者Th17细胞分泌大量的炎症细胞因子,抑制Treg细胞的分化,促进CD4+T细胞向Th17转化,导致Th17/Treg下降。Th17介导的促炎作用增强和Treg发挥的抗炎作用减弱促进COPD发生、发展。Th17/Treg失衡的分子作用机制复杂,且与疾病的严重程度和合并症/并发症密切相关。
Th17/Treg失衡在COPD发生中的机制 研究显示Th17/Treg失衡的机制主要有以下4个方面:(1)DNA甲基转移酶3a(DNA methyltransferase 3A,DNMT3a)通过正向调节c-Jun/AIF1轴调控DC,进而诱导Th17/Treg失衡[22]。(2)体外烟雾暴露可通过增加卷曲分泌蛋白(secreled Frizzled-relaled proteins 2,sFRP2)的水平调控Wnt/β-catenin信号通路,扰乱COPD患者外周血单核细胞(peripheral blood mononuclear cell,PBMC)中的Th17/Treg平衡,干预sFRP2可减弱Th17分化、增强Treg分化[23]。(3)细胞因子信号抑制因子1(cytokine signal suppressor,SOCS1)和3(SOCS3)以及STAT3和STAT5也参与Th17/Treg的失衡。在COPD动物模型中,肺支气管血管周围区域FOXP3+细胞数量与STAT5+和pSTAT5+细胞数量呈正相关[24]。既往研究证实,STAT5可以直接上调FOXP3的基因表达,诱导T细胞向Treg细胞分化;STAT3可诱导T细胞向Th17分化。SOCS3是STAT3的特异性抑制剂,可直接参与酪氨酸激酶2(janus kinase 2,JAK2)/STAT3信号通路,抑制Th17作用[25]。SOCS1可通过调节SOCS3水平和阻断INF-γ信号传导,促进Th17分化;也可能负调节胸腺中FOXP3+细胞的产生[24]。(4)腺苷2a受体(adenosine 2a receptor,A2aR)的激活也可增强下游p-STAT5表达,降低p-STAT3水平,抑制Th17分化及其相关细胞因子的作用,促进Treg分化[26]。
Th17/Treg失衡加重疾病进展 Cervillha等[27]在香烟烟雾暴露的动物模型中证实Th17/Treg失衡可导致气道炎症恶化。Sales等[28]发现:在吸烟的COPD患者,小气道的Treg数量减少,TGF-β和IL-10水平降低,IL-17的分泌增加,Th17/Treg失衡与患者的气流阻塞有关。Zheng等[29]发现,在COPD患者的外周血和肺组织中,Th17/Treg显著升高,在AECOPD患者中更加明显。Th17/Treg与FEV1%pred、FVC%pred、FEV1/FVC等呈负相关。Th17/Treg越高,患者的肺功能越差。
Th17/Treg失衡的COPD患者更易发生合并症或并发症。Wang等[30]证实COPD合并2型糖尿病患者外周血Th17及Th17相关细胞因子和转录因子水平较单纯COPD组和与健康组显著升高,Treg及Treg相关细胞因子和转录因子水平较单纯COPD组和健康组显著降低。COPD伴随合并症的患者Th17/Treg失衡较单纯COPD患者更为严重。COPD相关并发症患者体内同样存在严重的Th17/Treg失衡。Zhu等[31]发现COPD并发肺动脉高压患者的IL-17A水平较健康人显著升高,TGF-β的表达较健康人显著降低,Th17/Treg失衡可能与COPD相关肺动脉高压患者体内的Ras鸟苷三磷酸酶(Ras guanosine triphosphatase,Ras-GTPase)激活有关。
Th17/Treg及其平衡与COPD的治疗
基础实验研究
靶向Th17 Christenson等[16]发现气道上皮细胞中IL-17A升高与COPD患者类固醇抵抗有关。Ouyang等[32]证实使用抗IL-17A单克隆抗体,通过消耗促中性粒的集落刺激因子3(colony-stimulating factor 3,CSF3)增强了COPD小鼠对地塞米松的敏感性。Fukuzaki等[33]在弹性蛋白酶诱导的肺气肿模型中,使用抗IL17-A治疗改善了小鼠的肺部炎症。Liang等[34]使用拮抗性CD40抗体阻断了DC和T细胞之间的CD40-CD40L通路,减少了香烟烟雾暴露的COPD小鼠肺组织中Th17、IL-17A和IL-27水平,为COPD免疫炎症治疗提供了新靶点。Li等[35]发现某些中药的复方组合(20-S-人参皂苷Rh1、黄芪甲苷、淫羊藿苷、川陈皮素和丹皮酚)可抑制Th17分化,显著减轻COPD大鼠的炎症反应。
靶向Th17/Treg平衡 Yuan等[36]发现暴露于慢性烟雾的C1q(补体蛋白1复合物的一个组成部分)缺陷小鼠表现出以Th17细胞增加为标志的失控性肺部炎症;C1q重建可以增加Treg丰度,抑制烟雾引起的肺部炎症,并逆转已经存在的肺气肿。香烟烟雾介导的C1q损失可能在外周耐受性降低中起关键作用,有望成为治疗肺气肿的靶点。
Tang等[37]发现红霉素可减少外周血中的Th17细胞,增强Treg反应,改善小鼠肺气肿和肺部炎症。毛喉鞘蕊花植物的异福司可林(isoforskolin,ISOF)是腺苷酸环化酶异构体的有效激活剂,Xiao等[38]的研究表明ISOF可以降低Th17/Treg,改善COPD大鼠的肺组织损伤和肺功能、减轻全身炎症反应。Zhao等[26]明确补肺益肾方通过激活A2aR,抑制Th17细胞分化及其相关细胞因子的分泌,增强Treg细胞分化,改善COPD大鼠的肺功能,减轻肺部炎症。
临床研究 Eich等[39]开展的靶向IL-17A的2期临床试验结果显示,使用抗IL-17A单克隆抗体治疗中重度COPD患者未显示出疗效;在健康受试者中,使用抗IL-17A单克隆抗体中和IL-17A并不能减轻急性臭氧诱导的气道中性粒细胞增多症[40]。相反,阻断IL-17A可能削弱COPD患者的宿主防御能力,诱发或加重细菌感染。
研究显示多种临床药物可通过调节Th17/Treg失衡改善COPD患者的炎症反应,Liu等[41]发现N-乙酰半胱氨酸可通过降低缺氧诱导因子1a(hypoxia-inducible factor-1a,HIF-1a)调节Th17/Treg失衡,改善COPD患者的全身炎症。Xu等[42]纳入80例COPD患者和35例健康人,明确了人参皂苷可通过上调FOXP3调节Th17/Treg,从而改善COPD患者的全身炎症,稳定COPD患者的临床症状。Chen等[43]纳入120例稳定期COPD患者,随机分为安慰剂组和水苏颗粒组,随访1年,结果显示水苏颗粒降低了COPD患者体内Th17和IL-17A,升高了抗炎因子IL-10,减少了COPD患者的急性加重频率。
结语 综上所述,Th17及Treg在COPD中作用不同,两者之间的平衡对COPD至关重要。Th17主要发挥促炎作用,Treg则相反,两者失衡会加重气道炎症、加剧肺功能恶化,并与COPD合并症/并发症密切相关。调控Th17/Treg平衡的机制众多且复杂,涉及miR-21/Smad7/TGF-β、c-Jun/AIF1、Wnt/β-catenin、SOCS及STAT、A2aR等信号通路。针对Th17及Treg的分子靶向治疗正处于动物实验阶段。N-乙酰半胱氨酸、红霉素等药物被证实可以通过调节Th17/Treg平衡改善COPD患者的炎症。
Th17/Treg细胞作为COPD发病中重要的一环,针对Th17/Treg的免疫治疗在COPD中显示出良好前景,但Th17/Treg平衡与健康人免疫功能息息相关,如何减少T细胞介导的损伤,同时又对呼吸道感染产生免疫力,应充分考虑COPD的治疗过程中Th17及Treg细胞的潜在有利及有害影响,这些都值得进一步研究。
作者贡献声明 刘韩韩 文献调研,论文构思和撰写。朱蕾 论文审校和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
PIERRE A, LEMAIRE F, MEGHRAOUI-KHEDDAR A, et al. Impact of aging on inflammatory and immune responses during elastin peptide-induced murine emphysema[J]. Am J Physiol-Lung C, 2019, 316(4): 608-620.
[DOI]
|
[2] |
VAN EEDEN SF, HOGG JC. Immune-modulation in chronic obstructive pulmonary disease: current concepts and future strategies[J]. Respiration, 2020, 99(7): 550-565.
[DOI]
|
[3] |
YASUDA K, TAKEUCHI Y, HIROTA K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297.
[DOI]
|
[4] |
MIYARA M, YOSHIOKA Y, KITOH A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor[J]. Immunity, 2009, 30(6): 899-911.
[DOI]
|
[5] |
AKKAYA B, OYA Y, AKKAYA M, et al. Regulatory T cells mediate specific suppression by depleting peptide-MHC class Ⅱ from dendritic cells[J]. Nat Immunol, 2019, 20(2): 218-231.
[DOI]
|
[6] |
PU JD, XU J, CHEN L, et al. Exposure to biomass smoke induces pulmonary Th17 cell differentiation by activating TLR2 on dendritic cells in a COPD rat model[J]. Toxicol Lett, 2021, 348: 28-39.
[DOI]
|
[7] |
HE SY, SUN SH, LU JJ, et al. The effects of the miR-21/SMAD7/TGF-beta pathway on Th17 cell differentiation in COPD[J]. Sci Rep, 2021, 11(1): 6338.
[DOI]
|
[8] |
ANZALONE G, ALBANO GD, MONTALBANO AM, et al. IL-17A-associated IKK-alpha signaling induced TSLP production in epithelial cells of COPD patients[J]. Exp Mol Med, 2018, 50(10): 1-12.
|
[9] |
WU MD, LAI TW, JING D, et al. Epithelium-derived IL17A promotes cigarette smoke-induced inflammation and mucus hyperproduction[J]. Am J Respir Cell Mol Biol, 2021, 65(6): 581-592.
[DOI]
|
[10] |
GOUDA MM, PRABHU A, BHANDARY YP. Curcumin alleviates IL-17A-mediated p53-PAI-1 expression in bleomycin-induced alveolar basal epithelial cells[J]. J Cell Biochem, 2018, 119(2): 2222-2230.
[DOI]
|
[11] |
LIU ML, WU K, LIN JD, et al. Emerging biological functions of IL-17A: a new target in chronic obstructive pulmonary disease?[J]. Front Pharmacol, 2021, 12: 695957.
[DOI]
|
[12] |
GENG WR, HE HY, ZHANG Q, et al. Th17 cells are involved in mouse chronic obstructive pulmonary disease complicated with invasive pulmonary aspergillosis[J]. Chinese Med J-Peking, 2020, 134(5): 555-563.
|
[13] |
ZOU Y, CHEN X, LIU J, et al. Serum IL-1beta and IL-17 levels in patients with COPD: associations with clinical parameters[J]. Int J Chronic Obstr, 2017, 12: 1247-1254.
|
[14] |
KUBYSHEVA N, BOLDINA M, ELISEEVA T, et al. Relationship of serum levels of IL-17, IL-18, TNF-alpha, and lung function parameters in patients with COPD, asthma-COPD overlap, and bronchial asthma[J]. Mediat Inflamm, 2020, 2020: 4652898.
|
[15] |
LI SX, ZHAO S, WU ZR, et al. Alteration of immune profiles is associated with pulmonary function and symptoms in patients with chronic obstructive pulmonary disease[J]. Mol Med Rep, 2021, 24(5): 742.
[DOI]
|
[16] |
CHRISTENSON SA, VAN DEN BERGE M, FAIZ A, et al. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup[J]. J Clin Invest, 2019, 129(1): 169-181.
|
[17] |
STRÖM JE, POURAZAR J, LINDER R, et al. Airway regulatory T cells are decreased in COPD with a rapid decline in lung function[J]. Respir Res, 2020, 21(1): 330.
[DOI]
|
[18] |
CHIAPPORI A, FOLLI C, BALBI F, et al. CD4(+)CD25(high)CD127(-) regulatory T-cells in COPD: smoke and drugs effect[J]. World Allergy Organ, 2016, 9: 5.
[DOI]
|
[19] |
BRUZZANITI S, BOCCHINO M, SANTOPAOLO M, et al. An immunometabolic pathomechanism for chronic obstructive pulmonary disease[J]. P Natl Acad Sci USA, 2019, 116(31): 15625-15634.
[DOI]
|
[20] |
WU JH, ZHOU M, JIN Y, et al. Generation and immune regulation of CD4(+)CD25(-)Foxp3(+) T cells in chronic obstructive pulmonary disease[J]. Front Immunol, 2019, 10: 220.
[DOI]
|
[21] |
LO RE S, LECOCQ M, UWAMBAYINEMA F, et al. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis[J]. Am J Resp Crit Care, 2011, 184(11): 1270-1281.
[DOI]
|
[22] |
HUANG D, ZHOU B, LUO ZZ, et al. Cigarette smoke extract promotes DNA methyltransferase 3a expression in dendritic cells, inducing Th-17/Treg imbalance via the c-Jun/allograft inflammatory factor 1 axis[J]. Kaohsiung J Med Sci, 2021, 37(7): 594-603.
[DOI]
|
[23] |
ZHOU M, JIAO L, LIU YY. sFRP2 promotes airway inflammation and Th17/Treg imbalance in COPD via Wnt/beta-catenin pathway[J]. Resp Physiol Neurobi, 2019, 270: 103282.
[DOI]
|
[24] |
LEFSILVA, LOURENCO JD, SILVA KR, et al. Th17/Treg imbalance in COPD development: suppressors of cytokine signaling and signal transducers and activators of transcription proteins[J]. Sci Rep, 2020, 10(1): 15287.
[DOI]
|
[25] |
CHEN W, HONG YQ, MENG ZL. Bioinformatics analysis of molecular mechanisms of chronic obstructive pulmonary disease[J]. Eur Rev Med Pharmaco, 2014, 18(23): 3557-3563.
|
[26] |
ZHAO P, LIU XF, DONG HR, et al. Bufei Yishen formula restores Th17/Treg balance and attenuates chronic obstructive pulmonary disease via activation of the adenosine 2a receptor[J]. Front Pharmacol, 2020, 11: 1212.
[DOI]
|
[27] |
CERVILHA DAB, ITO JT, LOURENCO JD, et al. The Th17/Treg cytokine imbalance in chronic obstructive pulmonary disease exacerbation in an animal model of cigarette smoke exposure and lipopolysaccharide challenge association[J]. Sci Rep, 2019, 9(1): 1921.
[DOI]
|
[28] |
SALES DS, ITO JT, ZANCHETTA IA, et al. Regulatory T-cell distribution within lung compartments in COPD[J]. COPD, 2017, 14(5): 533-542.
[DOI]
|
[29] |
ZHENG XR, ZHANG LY, CHEN J, et al. Dendritic cells and Th17/Treg ratio play critical roles in pathogenic process of chronic obstructive pulmonary disease[J]. Biomed Pharmacother, 2018, 108: 1141-1151.
[DOI]
|
[30] |
WANG C, WANG H, DAI LM, et al. T-helper 17 cell/regulatory T-cell imbalance in COPD combined with T2DM patients[J]. Int J Chronic Obstr, 2021, 16: 1425-1435.
|
[31] |
ZHU R, XIE XC, WANG NN, et al. The T helper type 17/regulatory T cell imbalance was associated with Ras-GTPase overexpression in patients with pulmonary hypertension associated with chronic obstructive pulmonary disease[J]. Immunology, 2019, 157(4): 304-311.
|
[32] |
OUYANG SD, LIU CN, XIAO JX, et al. Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases[J]. JCI Insight, 2020, 5(3): e132836.
[DOI]
|
[33] |
FUKUZAKI S, RIGHETTI RF, SANTOS TMD, et al. Preventive and therapeutic effect of anti-IL-17 in an experimental model of elastase-induced lung injury in C57Bl6 mice[J]. Am J Physiol-Cell Ph, 2021, 320(3): C341-C354.
[DOI]
|
[34] |
LIANG Y, SHEN Y, KUANG LJ, et al. Cigarette smoke exposure promotes differentiation of CD4(+) T cells toward Th17 cells by CD40-CD40L costimulatory pathway in mice[J]. Int J Chronic Obstr, 2018, 13: 959-968.
|
[35] |
LI JS, ZHAO P, TIAN YG, et al. The Anti-inflammatory effect of a combination of five compounds from five Chinese herbal medicines used in the treatment of COPD[J]. Front Pharmacol, 2021, 12: 709702.
[DOI]
|
[36] |
YUAN XY, CHANG CY, YOU R, et al. Cigarette smoke-induced reduction of C1q promotes emphysema[J]. JCI Insight, 2019, 5(13): e124317.
|
[37] |
TANG SD, MA TT, ZHANG H, et al. Erythromycin prevents elastin peptide-induced emphysema and modulates CD4(+)T cell responses in mice[J]. Int J Chronic Obstr, 2019, 14: 2697-2709.
|
[38] |
XIAO C, CHENG S, LIN HC, et al. Isoforskolin, an adenylyl cyclase activator, attenuates cigarette smoke-induced COPD in rats[J]. Phytomedicine, 2021, 91: 153701.
[DOI]
|
[39] |
EICH A, URBAN V, JUTEL M, et al. A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease[J]. COPD, 2017, 14(5): 476-483.
[DOI]
|
[40] |
ROOS AB, SANDEN C, MORI M, et al. IL-17A is elevated in end-stage chronic obstructive pulmonary disease and contributes to cigarette smoke-induced lymphoid neogenesis[J]. Am J Resp Crit Care, 2015, 191(11): 1232-1241.
[DOI]
|
[41] |
LIU XP, HU ZX, ZHOU HY. N-acetylcysteine improves inflammatory response in COPD patients by regulating Th17/Treg balance through hypoxia inducible factor-1alpha pathway[J]. Biomed Res Int, 2021, 2021: 6372128.
|
[42] |
XU YQ, LV W, WU HJ, et al. Ginsenoside regulates Treg/Th17 cell ratio and inhibits inflammation to treat COPD[J]. Pharmazie, 2020, 75(11): 590-594.
|
[43] |
CHEN WS, CHEN H, ZHU D, et al. The clinical application value of compound Stachys sieboldii Miq granules to stable COPD patients[J]. Minerva Med, 2021.
[DOI]
|