2. 复旦大学附属中山医院厦门医院检验科 厦门 361015
2. Department of Laboratory Medicine, Zhongshan Hospital Xiamen Branch, Fudan University, Xiamen 361015, Fujian Province, China
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种慢性自身免疫性疾病。主要特征是患者体内产生自身抗体,形成免疫复合物,沉淀于各种脏器内,造成广泛性器质性损伤,其临床表现复杂,从轻微的皮肤黏膜受损到多器官和严重的中枢神经系统受累都可能发生[1]。SLE在中国的发病率约为30~37例/10万人,患者以女性居多,发病率呈逐年上升趋势,对社会和医疗资源造成严重负担[2]。虽然目前对SLE病理基础和致病危险因素的认知都取得了长足进展,但是具体发病原因仍不明确。
患者机体免疫功能紊乱被认为是SLE的一个重要的特征[3],其所引发的慢性炎症反应在自身免疫性疾病的发生发展过程中占据重要地位[4-5]。调节性B(regulatory B,Breg)细胞作为一类免疫调控细胞在抑制过度炎症反应中发挥重要作用[6-7],它可以通过分泌不同的细胞因子IL-10、IL-35以及直接抑制免疫效应细胞活性的方式调控免疫微环境,包括自然杀伤(natural killer,NK)细胞、CD4+T细胞、中性粒细胞以及树突状细胞(dendritic cells,DC)等多类细胞,降低机体内部炎症反应,维持免疫稳态[8-10]。
尽管医学界已经就Breg细胞的生物学功能达成部分共识,但尚未对其表型达成共识。迄今为止,已有多种人和小鼠体内的Breg细胞亚群被报道[6]。依据其表型的不同,不同亚群的Breg细胞的生物学功能存在细微的差别。其中CD19+ CD24+CD27+表型的Breg细胞是一群能分泌IL-10的免疫调节细胞[11],能强效调控机体内的免疫状态,抑制免疫细胞活性。该类Breg细胞在SLE中的作用罕有研究,因此本课题组拟通过回顾性研究分析SLE患者外周血液中CD19+CD24+CD27+的Breg细胞与患者的临床疾病相关性,进一步探究Breg细胞在SLE疾病发生发展中的作用。
材料和方法研究对象和标本收集 收集23例2021年6—8月间在复旦大学附属中山医院就诊的SLE患者和23例进行体检的健康人群(表 1)。SLE患者纳入标准:(1)依据血液和病理检测结果对照美国风湿病学会推荐的SLE分类标准,临床诊断为SLE[12];(2)SLE的新发患者;(3)未接受过临床治疗;(4)无其他重大疾病,包括肿瘤、心血管疾病、肺部疾病和神经系统疾病。健康人群纳入标准:(1)无自身免疫性疾病;(2)无其他重大疾病,包括肿瘤、心血管疾病、肺部疾病和神经系统疾病。本研究获得复旦大学附属中山医院伦理委员会批准(批准号:B2022-348),所有入组人员均签署知情同意书。
Diagnosis | Sex | Age(y) | Autoantibody/Clinical status |
SLE01 | Female | 38 | ANA=1∶640;anti-dsDNA(+) |
SLE02 | Female | 55 | ANA=1∶160;anti-dsDNA(+);anti-SSA(+) |
SLE03 | Female | 67 | ANA=1∶160;anti-dsDNA(+) |
SLE04 | Female | 63 | ANA=1∶1280;anti-dsDNA(+);RF=89 IU/mL |
SLE05 | Male | 43 | ANA=1∶640;anti-dsDNA(+);anti-SSA(+) |
SLE06 | Female | 55 | ANA=1∶160 |
SLE07 | Male | 61 | ANA=1∶640;anti-dsDNA(+) |
SLE08 | Female | 41 | ANA=1∶640;anti-dsDNA(+);anti-SSA(+) |
SLE09 | Male | 39 | ANA=1∶160;anti-dsDNA(+) |
SLE10 | Female | 42 | ANA=1∶320;anti-dsDNA(+);anti-RNP(+) |
SLE11 | Female | 38 | ANA=1∶160;anti-dsDNA(±) |
SLE12 | Female | 43 | ANA=1∶160;anti-dsDNA(+);anti-SSA(+) |
SLE13 | Female | 48 | ANA=1∶320 |
SLE14 | Male | 51 | ANA=1∶2 560;anti-dsDNA(+);anti-SSA(+);RF=140 IU/mL |
SLE15 | Female | 46 | ANA=1∶160;anti-dsDNA(+);anti-Sm(+) |
SLE16 | Female | 50 | ANA=1∶320;anti-dsDNA(+);anti-SSA(+) |
SLE17 | Female | 53 | ANA=1∶160;anti-dsDNA(±) |
SLE18 | Male | 52 | ANA=1∶320;anti-dsDNA(+) |
SLE19 | Male | 49 | ANA=1∶640;anti-dsDNA(+);anti-Sm(+) |
SLE20 | Female | 40 | ANA=1∶1 280;anti-dsDNA(+);anti-SSA(+) |
SLE21 | Male | 62 | ANA=1∶160;anti-dsDNA(+) |
SLE22 | Female | 68 | ANA=1∶640;anti-dsDNA(+);anti-Sm(+) |
SLE23 | Female | 57 | ANA=1∶160;anti-dsDNA(+) |
ANA:Antinuclear antibody. |
收集研究对象的EDTA-K2抗凝血和血浆各2 mL。血浆标本冻存于-80 ℃冰箱中备用。同时收集SLE患者经过临床治疗1~3个月后的EDTA-K2抗凝血和血浆。
流式分析 吸取50 μL EDTA-K2抗凝血标本置于流式管中,加入荧光抗体CD19-FITC、CD27-APC、CD24-PE(美国BD公司)各5 μL,充分混匀,常温避光孵育15min。在流式管内加入破膜剂A液(美国BD公司)100 μL,充分混匀,避光孵育5 min。加入2 mL裂红细胞液(美国BD公司),充分混匀,避光孵育10 min,以253×g离心5 min,去除上清液。加入50 μL破膜剂B液(美国BD公司),加入5 μL IL-10-BV421荧光抗体,充分混匀,避光孵育15 min。加入2 mL PBS,充分混匀,以253×g离心5 min,去除上清液。加入含有1%多聚甲醛的PBS,重悬细胞,上流式机器检测(Canto Ⅱ,美国BD公司)。
细胞因子检测 使用流式CBA试剂盒(北京旷博生物技术有限公司)检测多种细胞因子,包括IL-1β、IL-10、TNF-α和IFN-γ,操作方法按试剂操作手册进行。
统计学分析 使用SPSS 19.0统计软件进行数据处理和统计分析。计量资料以x±s表示,两组间差异采用(非)配对t检验,相关性采用线性回归分析,P < 0.05为差异有统计学意义。
结果SLE患者外周血Breg比例以及胞内IL-10表达水平变化 我们分别检测了SLE患者和健康人群外周血中Breg细胞的比例,按照流式荧光强度将Breg细胞分为CD24highCD27+以及CD24midCD27+两个亚群,同时进一步分析了这两类细胞胞内IL-10的表达情况(图 1A)。结果发现,SLE患者体内CD24highCD27+的比例为6.09%±2.61%,显著高于健康人群的2.03%±1.42%(P < 0.001);SLE患者外周血中CD24midCD27+的比例为12.28%±4.90%,高于健康人群的9.08%±4.02%(P=0.002 7)。在SLE患者中,CD24highCD27+细胞内IL-10的表达比例为35.33%±21.45%,明显高于CD24midCD27+细胞(14.23%±10.43%,P < 0.001)。两组比较,CD24highCD27+细胞和CD24midCD27+细胞内的IL-10表达差异有统计学意义(P < 0.001,P=0.012,图 1B)。
SLE患者体内细胞因子浓度以及与Breg细胞的相关性分析 我们检测了SLE患者和健康人群外周血血浆中相关细胞因子浓度,包括IL-1β、IL-10、TNF-α和IFN-γ。结果显示(图 2A),SLE患者的这4种细胞因子表达水平均显著升高(P < 0.001),IL-1β为(9.24±9.97)pg/mL,IL-10为(43.50±23.06)pg/mL,TNF-α为(11.26±7.48)pg/mL,IFN-γ为(12.83±7.27)pg/mL;其在健康人群中,分别为(2.00±0.96)pg/mL、(9.33±8.55)pg/mL、(3.81±2.06)pg/mL和(2.18±0.87)pg/mL。分析各细胞因子浓度与Breg细胞比例的相关性发现(图 2B),IL-10与CD24midCD27+型Breg细胞正相关(P=0.029 3,R2=0.209),其与CD24highCD27+细胞也存在正相关,但差异无统计学意义(P=0.059 1,R2=0.159),其他因子与两种类型的Breg细胞均无相关性。
临床治疗后SLE患者体内的Breg细胞表达水平显著下降 我们同时收集经过1~3个月临床治疗后进行随访的同一批SLE患者外周血和血浆,对Breg细胞和相应细胞因子进行检测,共收集23例患者中17例的血液标本。经过泼尼松以及羟氯喹等治疗(图 3),患者体内CD24highCD27+型Breg细胞比例有所下调(P=0.018 9),CD24midCD27+细胞也有所下降(P=0.005 4),外周血中IL-10较临床治疗前有所下降(P=0.016 3)。
讨论SLE是一种常见的自身免疫性疾病,其发病原因和自身免疫状态息息相关[13],多项研究表明免疫紊乱和慢性炎症是SLE疾病发生发展的重要原因之一[14]。免疫调节细胞作为自身免疫稳态维持中的重要一环,参与多种疾病的发展过程。Breg细胞是近年来备受关注的免疫调节细胞,包含多种亚型,其生物学作用已经在多类疾病中被报道[15-17]。最近提出的CD19+CD24+CD27+表型的Breg细胞在SLE中尚未见研究。本研究分析了SLE患者外周血液中循环的CD19+CD24+CD27+细胞和相关细胞因子,以探究该类Breg细胞在SLE疾病中发挥的生物学作用。
依据CD24细胞表达程度的不同,我们将CD19+CD24+CD27+细胞细分为CD24highCD27+型和CD24midCD27+型Breg细胞,之前研究发现CD24表达差异可能会影响细胞的生物学功能[18-19]。本研究发现相较于表面健康人群,SLE患者外周循环中的两种Breg细胞明显升高。提示Breg细胞在自身免疫疾病患者体内代偿性升高,同时两种细胞内IL-10表达水平也明显上调,值得注意的是CD24highCD27+型Breg细胞内IL-10升高的程度远远超过CD24midCD27+型Breg细胞。进一步提示两种类型的Breg细胞可能存在差异,CD24highCD27+型Breg细胞分泌IL-10的能力更强,其单个细胞发挥的免疫调节作用也更强。另一方面,CD24highCD27+型Breg细胞在外周血中所占比例小于CD24midCD27+型Breg细胞。
我们通过检测外周血中各类细胞因子的浓度,发现几类重要的细胞因子相较于正常人群均显著升高,包括IL-1β、IL-10、TNF-α和IFN-γ,表明SLE患者体内的免疫功能发生紊乱,存在明显的炎症反应,其结果符合患者的临床特征。这几种重要的细胞因子与两类Breg细胞的相关性研究结果显示,CD24midCD27+型Breg细胞与IL-10表达水平正相关,而CD24highCD27+型Breg细胞与IL-10的相关性较弱,差异无统计学意义,其他细胞因子与两种Breg细胞无相关性。这一结果提示,CD24midCD27+型Breg细胞可能作为分泌IL-10的细胞主体,占据Breg细胞的主要部分,相较于CD24highCD27+型Breg细胞,发挥的机体免疫调控作用更显著。我们还分析了患者使用药物治疗后体内两种Breg细胞的数量和IL-10水平:SLE患者通过激素治疗,两种Breg细胞和IL-10水平都随之下降,表明Breg细胞与患者的体内炎症状态可能存在关联。外周循环中的Breg细胞比例对于SLE患者的疾病状态具有潜在的提示作用。
有文献认为CD19+CD24highCD38high型Breg细胞在SLE患者体内代偿性升高,也有研究认为其功能受损导致分泌的IL-10不足[9],而本研究发现CD19+CD24+CD27+型Breg细胞不仅数量升高,其细胞内部的IL-10也增强,提示CD19+CD24+CD27+型Breg细胞在SLE患者免疫调控中可能具有重要作用,但是具体的作用机制和生物学调控作用还有待实验证明。本研究的不足之处在于:首先,入组样本量较少;其次,未进一步探究CD24highCD27+型和CD24midCD27+型Breg细胞之间是否存在生物学差异。在后续试验中我们将继续扩大入组人数,并通过测序的方式探究两组Breg细胞之间的差异,从而进行更深入的研究。
作者贡献声明 朱捷 论文构思、撰写和修改,数据采集,统计分析。吴蕙 论文撰写,数据采集,统计分析。顾梅秀,潘柏申 研究指导,数据采集。郭玮,王蓓丽 论文构思和修改,实验设计。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
KAUL A, GORDON C, CROW MK, et al. Systemic lupus erythematosus[J]. Nat Rev Dis Primers, 2016, 2: 16039.
[DOI]
|
[2] |
CARTER EE, BARR SG, CLARKE AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact[J]. Nat Rev Rheumatol, 2016, 12(10): 605-620.
[DOI]
|
[3] |
FINZEL S, SCHAFFER S, RIZZI M, et al. Pathogenesis of systemic lupus erythematosus[J]. Z Rheumatol, 2018, 77(9): 789-798.
[DOI]
|
[4] |
FRANGOU E, VASSILOPOULOS D, BOLETIS J, et al. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment[J]. Autoimmun Rev, 2019, 18(8): 751-760.
[DOI]
|
[5] |
MUÑOZ LE, JANKO C, SCHULZE C, et al. Autoimmunity and chronic inflammation-two clearance-related steps in the etiopathogenesis of SLE[J]. Autoimmun Rev, 2010, 10(1): 38-42.
[DOI]
|
[6] |
ROSSER EC, MAURI C. Regulatory B cells: origin, phenotype, and function[J]. Immunity, 2015, 42(4): 607-612.
[DOI]
|
[7] |
WANG RX, YU CR, DAMBUZA IM, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641.
[DOI]
|
[8] |
HORIKAWA M, WEIMER ET, DILILLO DJ, et al. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice[J]. J Immunol, 2013, 190(3): 1158-1168.
[DOI]
|
[9] |
BLAIR PA, NOREÑA LY, FLORES-BORJA F, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients[J]. Immunity, 2010, 32(1): 129-140.
[DOI]
|
[10] |
DING Q, YEUNG M, CAMIRAND G, et al. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice[J]. J Clin Invest, 2011, 121(9): 3645-3656.
[DOI]
|
[11] |
IWATA Y, MATSUSHITA T, HORIKAWA M, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells[J]. Blood, 2011, 117(2): 530-541.
[DOI]
|
[12] |
ARINGER M. EULAR/ACR classification criteria for SLE[J]. Semin arthritis rheum, 2019, 49(3S): S14-S17.
|
[13] |
HERRADA AA, ESCOBEDO N, IRURETAGOYENA M, et al. Innate immune cells' contribution to systemic lupus erythematosus[J]. Front Immunol, 2019, 10: 772.
[DOI]
|
[14] |
ALELE JD, KAMEN DL. The importance of inflammation and vitamin D status in SLE-associated osteoporosis[J]. Autoimmun Rev, 2010, 9(3): 137-139.
[DOI]
|
[15] |
YAO Y, SIMARD AR, SHI FD, et al. IL-10-producing lymphocytes in inflammatory disease[J]. Int Rev Immunol, 2013, 32(3): 324-336.
[DOI]
|
[16] |
ALHABBAB RY, NOVA-LAMPERTI E, ARAVENA O, et al. Regulatory B cells: development, phenotypes, functions, and role in transplantation[J]. Immunol Rev, 2019, 292(1): 164-179.
[DOI]
|
[17] |
LIU J, CHEN X, HAO S, et al. Human chorionic gonadotropin and IL-35 contribute to the maintenance of peripheral immune tolerance during pregnancy through mediating the generation of IL-10+ or IL-35+ Breg cells[J]. Exp Cell Res, 2019, 383(2): 111513.
[DOI]
|
[18] |
SUMIMOTO K, UCHIDA K, KUSUDA T, et al. The role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis[J]. Pancreatology, 2014, 14(3): 193-200.
[DOI]
|
[19] |
STOŻEK K, GRUBCZAK K, MAROLDA V, et al. Lower proportion of CD19+IL-10+ and CD19+CD24+CD27+ but not CD1d+CD5+CD19+CD24+CD27+ IL-10+ B cells in children with autoimmune thyroid diseases[J]. Autoimmunity, 2020, 53(1): 46-55.
[DOI]
|