文章快速检索     高级检索
   复旦学报(医学版)  2023, Vol. 50 Issue (2): 189-195, 212      DOI: 10.3969/j.issn.1672-8467.2023.02.005
0
Contents            PDF            Abstract             Full text             Fig/Tab
I期临床试验中健康受试者筛选失败原因及影响因素分析
张莉1,2 , 孟现民3 , 董平1 , 王斌2     
1. 上海市公共卫生临床中心药学部 上海 201508;
2. 复旦大学附属华山医院药剂科 上海 200040;
3. 深圳市第三人民医院药学部 深圳 518112
摘要目的 分析Ⅰ期临床试验(Phase Ⅰ clinical trial,PⅠCT)中健康受试者(healthy subject,HS)筛选失败(screening failure,SF)的原因及影响因素,为今后PⅠCT中HS筛选提供参考。方法 对上海市公共卫生临床中心在2016年6月—2020年9月期间完成的PⅠCT的HS筛选进行回顾性研究,统计不合格例次构成比及发生率,分析人口学信息及筛选步骤设置对筛选合格率(eligibility rate,ER)的影响。结果 共纳入58项PⅠCT,从12 028例受试者中筛选出3 315例合格HS,ER 27.6%;不合格例次占比最高的是实验室检查(47.2%),其次是生命体征(vital sign,VS)、辅助检查和人口学信息。筛选过程中纳入烟碱测试(P=0.003)、胸片(P=0.025)或腹部B超检查(P=0.002)对ER有显著影响。结论 PⅠCT中HS筛选失败的主要原因是实验室检查,其次是VS、辅助检查和人口学信息不合格;HS筛选过程中增加烟碱测试、胸片或腹部B超可使ER降低。
关键词Ⅰ期临床试验(PⅠCT)    健康受试者(HS)    筛选失败(SF)    筛选合格率(ER)    
Analysis of reasons for failure in screening healthy subjects in phase I clinical trials
ZHANG Li1,2 , MENG Xian-min3 , DONG Ping1 , WANG Bin2     
1. Department of Pharmacy, Shanghai Public Health Clinical Center, Shanghai 201508, China;
2. Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China;
3. Department of Pharmacy, the Third People's Hospital of Shenzhen, Shenzhen 518112, Guangdong Province, China
Abstract: Objective To clarify the reasons for failure in screening healthy subjects(HS), and to demonstrate the factors influencing eligibility of HS for inclusion in phase Ⅰ clinical trials(PⅠCT). Methods We performed a retrospective study that described the processes of screening HS for inclusion in PⅠCT carried out in Shanghai Public Health Clinical Center between Jun 2016 and Sep 2020. The constituent ratio and incidence of reasons for screening failure (SF) were calculated and the impacts of demographic information and screening steps on the screening eligibility rate (ER) were analyzed. Results A total of 12 028 volunteers participated in screening for inclusion in 58 PⅠCT. Of these, 3 315 were evaluated by clinicians as "healthy" with an eligibility rate (ER) of 27.6%. The participants failing screening because of abnormal laboratory examination accounted for 47.2% of exclusions, followed by abnormal vital signs (VS), abnormal auxiliary examination and unqualified demographic information. The performance of urine nicotine test made a significant difference to ER (P=0.003), along with chest radiograph (P=0.025), and abdominal ultrasound (P=0.002). Conclusion The main reason for exclusion in the screening of HS is abnormal laboratory examination, followed by abnormal VS, abnormal auxiliary examination, and unqualified demographic information. Inclusion of urine nicotine test, chest radiograph, or abdominal ultrasound in screening may lower the ER for inclusion.
Key words: Phase Ⅰ clinical trial(PⅠCT)    healthy subject (HS)    screening failure (SF)    eligibility rate (ER)    

近十年来我国加大了对医药产业的政策支持与资金投入,除要求制药企业完成已上市仿制药的一致性评价,还通过政策及药品审评审批制度的完善,引导企业加快创新药研发。I期临床试验(phase Ⅰ clinical trial,PⅠCT)是药物研发的重要步骤。创新药Ⅰ期主要评估药物的安全性、耐受性、药代动力学以及可能的药效学指标;仿制药Ⅰ期主要是通过药代动力学和药效动力学指标评价仿制药与参比药的生物等效性。我国药物临床试验登记与信息公示平台数据显示,2020年共登记药物临床试验1 473项,较2019年增长22.5%;在所申报的临床试验中,PⅠCT占47.3%[1-3]。除部分毒性较大的药物外,大多数PⅠCT的受试对象为健康受试者(healthy subject,HS)。我国民众对临床试验的认知不充分,HS以低收入群体为主[4]。近年来随着PⅠCT数量增加,HS需求增大,面临HS短缺的情况。以生物等效性试验为代表的PⅠCT通常集中开展,需在短期内筛选到足够例数的HS方可启动试验,能否及时完成筛选任务成为PⅠCT顺利开展的关键环节[5-6]。HS招募不足,会使PⅠCT进度受阻,增加新药研发的时间和经济成本,最终推迟药物的批准上市;过度招募不仅增加试验成本,还会造成HS资源浪费。现有关于PⅠCT中HS筛选的研究,国外以招募方法、受试者意愿对入组的影响较多[4, 7-9],国内虽有一些关于筛选过程的研究,但大多样本量较小,且鲜有关于影响因素的研究[10-13]。PⅠCT中HS的筛选流程、入排标准设定上同质性较强,阐明筛选失败(screening failure,SF)的原因及影响因素将有助于优化今后的HS筛选。本研究就上海市公共卫生临床中心开展PⅠCT的HS筛选工作展开研究,分析SF原因及其影响因素,以期为今后的HS筛选工作提供参考。

资料和方法

研究对象  上海市公共卫生临床中心2016年7月—2020年9月期间完成的PⅠCT为研究对象。纳入标准:(1)以HS为受试对象;(2)参加筛选及SF的受试者例次、性别及不合格原因记录完整。排除标准:筛选步骤执行了特殊检验、检查项目,如13C-尿素呼气试验、Allens's试验、气道检查等。

研究方法  从机构项目数据库中按要求筛选PⅠCT,收集HS的筛选流程、入排标准,记录参加筛选的受试者性别、民族、年龄和SF的不合格原因,计算不合格情况发生率及构成比,确定SF的主要原因,并进一步分析性别、民族、年龄及筛选流程纳入的检验、检查项目对筛选合格率(eligibility rate,ER)及入组的影响。

统计学分析  采用SPSS 23.0软件进行数据处理。HS筛选结果采用例数(n)、百分比(%)和四分位数(inter-quartile range,IQR)进行描述性分析。不同性别、民族对入组的影响采用χ2检验;年龄对入组的影响采用Mann-Whitney U检验,不同年龄组与入组率的关系采用Spearman相关性检验;检验、检查项目的设置对ER的影响采用Mann-Whitney U检验。P < 0.05为差异有统计学意义。

结果

纳入的项目及受试者筛选概况  共纳入符合要求的PⅠCT 58项,涉及59种试验制剂,主要为抗病毒药物、抗菌药物、降压药、降糖药和抗肿瘤药物的生物等效性研究;从12 028例受试者中筛选出符合要求的HS 3 315例,ER为27.6%;女性ER显著高于男性(31.7% vs 26.0%,P < 0.001,χ2=39.237)。

HS筛选流程  筛选流程见图 1。所有PⅠCT均实施了第1~6步,部分PⅠCT在执行第7、8步时稍有不同。受试者一旦被判定为不合格,将终止筛选,不再执行后续的步骤。所有PⅠCT均要求受试者年龄≥18岁,BMI为19~26 kg/m2(包含),且男性体重≥50 kg,女性体重≥45 kg;其中42项要求年龄上限为45~65岁。

The number in parentheses indicates how many clinical trials, while the number out of parentheses indicates how many volunteers conducted the screening step. HCG: Human chorionic gonadotropin; NA: Not available. 图 1 筛选步骤流程图 Fig 1 Flew chart of screening process

SF原因  在8 713例SF的受试者中,有463例自动退出;287例因合格人数已满未通知入组;其余7 963例受试者都存在不合格情况。不合格例次占比和异常率最高的均为实验室检查(47.2%,50.6%),其次是VS(22.0%,17.0%)、辅助检查不合格例次占比和烟碱测试异常率也较高,其他筛选不合格情况详见表 1

表 1 筛选失败的原因列表 Tab 1 Reasons for screening failure
Process of screening Participants completed Ineligible participants Eligible participants Ineligible reason unclear Eligible* rate (%) Ineligible rate (%) Proportion of participants excluded (%)
Quit 12 028 463 11 565 0 96.2 3.9 5.5
Demographic information collection 11 565 660 10 905 0 94.3 5.7 7.8
Vital signs 10 905 1 853 9 052 0 83.0 17.0 22.0
  Blood pressure 10 905 804 5 413 4 688 87.1 12.9 86.8a
  Pulse 10 905 327 5 890 4 688 94.7 5.3 35.3a
  Respiratory rate 10 905 13 6 204 4 688 99.8 0.2 1.4a
  Temperature 10 905 7 6 210 4 688 99.9 0.1 0.8a
Authentication 9 052 444 8 608 0 95.1 4.9 5.3
  Participated in other clinical trials in previous 3 months 9 052 224 8 828 0 97.5 2.5 50.5b
  Identity card out of order1 9 052 220 8 832 0 97.6 2.4 49.6b
Inquiry 8 608 494 8 114 0 94.3 5.7 5.9
  Smoking 8 608 117 7 648 843 98.5 1.5 34.1c
  Drinking 8 608 6 7 759 843 99.9 0.1 1.8b
  Used prohibited medications in the last 2 weeks 8 608 94 7 671 843 98.8 1.2 27.4c
  Taken foods not allowed in the last 2 weeks 8 608 35 7 730 843 99.6 0.5 10.2c
  Allergic history 8 608 40 7 725 843 99.5 0.5 11.7c
  Diseases history 8 608 86 7 679 843 98.9 1.1 25.1c
  Blood donation in previous 3 months 8 608 16 7 749 843 99.8 0.2 4.7c
  Can't follow the protocol2 8 608 16 7 749 843 99.8 0.2 4.7c
  Other situations3 8 608 17 7 748 843 99.8 0.2 5.0c
Physical examination 8 114 58 8 056 0 99.3 0.7 0.7
Urine test for cotinine 2 046 194 1 852 0 90.5 9.5 2.3
Laboratory examinations4 7 862 3 978 3 884 0 49.4 50.6 47.2
  Routine blood count 7 862 490 4 156 3 216 89.5 10.6 20.7d
  Urine routine 7 862 732 3 914 3 216 84.2 15.8 30.9d
  Blood biochemistry 7 862 1 278 3 368 3 216 72.5 27.5 54.0d
    Liver function 7 862 667 3 623 3 572 84.5 15.6 56.3e
    Renal function 7 862 138 4 152 3 572 96.8 3.2 11.7e
    Blood lipid 6 733 196 3 510 3 027 94.7 5.3 16.5e
    Blood glucose 7 862 55 4 235 3 572 98.7 1.3 4.6e
    Blood electrolytes 6 446 8 3 391 3 047 99.8 0.2 0.7e
    Blood uric acid 7 006 156 3 608 3 242 95.9 4.1 13.2e
    Serum creatine kinase 6 569 50 3 534 2 985 98.6 1.4 4.2e
  Coagulation function 7 382 88 4 078 3 216 97.9 2.1 3.7d
  Transmissible infections test 7 862 163 4 483 3 216 96.5 3.5 6.9d
    Hepatitis B virus 7 862 99 4 547 3 216 97.9 2.1 60.7f
    Hepatitis C virus 7 862 14 4 632 3 216 99.7 0.3 8.6f
    Human immunodeficiency virus 7 862 6 4 640 3 216 99.9 0.1 3.7f
    Syphilis 7 862 44 4 602 3 216 99.1 1.0 27.0f
Auxiliary examinations 7 862 672 7 190 0 91.5 8.6 8.0
  Electrocardiograph 7 862 521 7 264 77 93.3 6.7 78.7g
  Chest radiography 1 269 93 1 099 77 92.2 7.8 14.1g
  Abdominal ultrasound 2 091 113 1 901 77 94.4 5.6 17.1g
Breath alcohol test 3 318 0 3 318 0 100 0 0
Drug test 3 318 3 3 315 0 99.9 0.1 0
* Eligible rate calculated as follows:Eligible rate=Eligible participants/(Eligible participants+Ineligible participants).1 Consists of using other's identity card and identity card demagnetization or lost. 2Can't follow the protocol because of schedule conflicts or different diet habit. 3Other situations include intolerance to blood drawn or lactose. 4 Since not all trials took urine test for cotinine,breath alcohol test and drug testing as screening process,so they were not included in the laboratory examinations;19 women excluded for urine/blood pregnancy test positive were not recorded in this table. a Proportion of participants excluded at vital signs measurement;b Proportion of participants excluded at authentication;c Proportion of participants excluded at inquiry;d Proportion of participants excluded because of abnormal laboratory examinations;e Proportion of participants excluded because of abnormal blood biochemistry;f Proportion of participants excluded because of transmissible infectious test positive;g Proportion of participants excluded because of abnormal auxiliary examinations.

截至体格检查阶段的SF情况  该阶段共有3 509例(30.3%)受试者SF,其中VS异常1 853例,主要表现为血压和脉搏异常;身份验核不合格444例(4.9%);问诊不合格494例(5.7%)。

实验室检查和辅助检查SF情况  7 862例受试者参加了实验室检查和辅助检查。实验室检查异常3 978例,以血生化异常最多(1 278例,27.5%),其次是尿常规(732例,15.8%)和血常规(490例,10.6%);血生化以肝功能异常最多(667例,15.6%),其次是血脂(196例,5.3%)和血尿酸(156例,4.1%)。辅助检查异常(672例,8.6%),以心电图最多(521例,6.7%),其次是胸片(93例,7.8%)和腹部超声(113例,5.6%)。

人口学信息对入组的影响分析  除104例作为备选外,共有3 211例HS成功入组,女性占32.0%;女性入组率30.7%高于男性的25.1%(P < 0.001);少数民族占4.2%,入组率与汉族差异无统计学意义(P=0.195)。入组女性年龄小于未入组女性(P < 0.001);入组与未入组男性的年龄差异无统计学意义(P=0.464)(表 2)。入组率与年龄呈负相关(P=0.037),进一步按性别分组,发现女性入组率与年龄呈负相关(P < 0.001),男性入组率与年龄不相关(P=0.104,表 3)。

表 2 人口学特征对入组的影响因素分析 Tab 2 Analysis of demographic factors influencing enrollment
Screened Subjects enrolled Subjects not enrolled P Statistic values
Gender [n(%)] < 0.001 χ2=38.805
  Male (8 688,72.23) 2 184 (25.1) 6 504 (74.9)
  Female (3 340,27.77) 1 027 (30.7) 2 313 (69.3)
Ethnic [n(%)] 0.195 χ2=1.678
  Han (11 469,95.35) 3 075 (26.8) 8 394 (73.2)
  Minority (559,4.65) 136 (24.3) 423 (75.7)
Age (IQR)
  Male 28 (24,32) 28 (24,33) 0.464 Z=-0.733
  Female 28 (24,37) 30 (24,40) < 0.001 Z=-4.147
表 3 不同年龄层的入组率 Tab 3 Enrolled rate at different ages
Age (y) Enrolled rate of male Enrolled rate of female Enrolled rate of all
18-26 25.1% (882/3 508) 33.5% (411/1 226) 27.3% (1 293/4 734)
27-35 26.3% (991/3 762) 31.5 (318/1 009) 27.4% (1 309/4 771)
36-44 23.0% (255/1 107) 29.0% (208/717) 25.4% (463/1 823)
45-53 19.4% (53/273) 22.3% (86/385) 21.2% (139/657)
54-62 21.4% (3/14) 13.8% (4/29) 16.3% (7/43)
R -0.800 -1.000 -0.900
P 0.104 < 0.001 0.037

检验、检查项目对ER的影响因素分析  HS筛选步骤增加烟碱测试、胸片以及腹部B超可显著降低ER(表 4)。

表 4 筛选步骤设置对筛选合格率的影响因素分析 Tab 4 Analysis of influence of screening process on eligibility
Options of
screening rules
Eligible rate (%) P Z
Performed Unperformed
Urine test for cotinine 22.9 32.1 0.003 -2.980
Chest radiography 26.7 32.0 0.025 -2.245
Abdominal ultrasound 26.0 33.3 0.002 -3.148
Creatine kinase 30.2 29.1 0.549 -0.599
Blood lipid 28.4 34.1 0.082 -1.739
Blood electrolytes 27.9 33.6 0.053 -1.935
Blood uric acid 28.6 31.7 0.209 -1.257
Coagulation function 28.6 34.1 0.081 -1.745
Male only 26.3 30.2 0.465 -0.763
讨论

本机构HS筛选ER为27.6%,相较国内其他机构,与上海(25.1%)[14]和广州(29.1%~31.6%)[16]相近,比北京(42.7%)[11]和山西(45.3%)[17]稍低;比印度(47.4%)[18]、非洲(59.1%)[19]和法国(58.0%)[20]低,比德国(21.3%)[6]高,差异可能与入排标准及筛选流程不同有关。相较北京[11]和山西[17],本机构部分试验筛选流程增加了烟碱测试和腹部B超;从表 4可知,筛选流程增加烟碱测试和腹部B超均可降低ER。在Omosa-Manyonyi等[19]和Roux等[20]的研究中,受试者在参加现场筛选前都经过预筛选从而提高了ER,而Rosenkranz等[21]的研究增加了嗅觉功能等特殊检查,从而降低了ER。本机构女性ER高于男性,与国内外其他机构情况一致[10, 17, 20]。男性ER偏低,反映出男性潜在健康问题的概率高于女性,这与我国各地高校男生体检合格率普遍低于女生的情况相符[22-25]

表 1显示,HS的SF不合格例次占比和异常率最高的均为实验室检查,这与其他研究结果一致[11-13],表明实验室检查异常是导致SF最主要的原因。实验室检查指标种类繁多,包括血常规、尿常规和血生化等在内的各项指标都有较高异常率。VS异常是导致SF的另一重要原因,以血压升高多见。参加筛选的受试者并无高血压病史,筛选期间血压升高,除部分受试者可能罹患高血压外,不排除因为紧张或环境因素导致的血压升高。本研究中有9.5%的受试者在否认吸烟后烟碱测试阳性,考虑可能由被动吸烟所致[26-27];此外,不排除受试者为成功入组向研究者隐瞒生活史[28]

参加本机构PⅠCT的女性HS占32.0%,与我国其他机构相近[11-13, 29],在日本、非洲、印度和美国这一比例分别为33.3%[30]、37.1%[19]、11.01%[31]和19.5%~35.9%[32-34],表明PⅠCT中HS性别比例失衡普遍存在,药物上市后需多关注其在女性群体的反应。本机构少数民族HS仅占4.2%,较北京(6.1%)[4]和厦门(7.9%)[29]低,远低于我国少数民族人口比例8.89%[35]。部分药物在不同民族患者中的药代动力学存在差异[36-39],随着我国少数民族人口比例逐渐增加[40],我国未来的PⅠCT设计可能需要提高少数民族HS占比,以提高研究结果对少数民族人群的适用性。表 3显示,入组率随年龄增长而下降,这与龚诗立等[13]的研究结果一致。随着年龄的增长,身体机能逐渐衰退,年长者在筛选时不合格率更高。表 4显示,筛选步骤增加烟碱测试、胸片或腹部B超检查会降低ER,可能与3项检查的异常率较高有关。

对优化未来PⅠCT的HS筛选工作,本研究给出以下建议:(1)在招募广告中强调试验方案对受试者年龄、体重和BMI的要求,并建议受试者在参加现场筛选前进行自我评估,以减少因人口学信息不符合要求导致SF;(2)提醒受试者在筛选前清淡饮食,避免剧烈运动或熬夜,并注意个人卫生,以减少因血生化和尿常规异常导致SF;(3)提供温馨舒适的环境,确保在受试者静息状态下测量VS,以减少因血压升高导致SF;(4)研究人员在受试者签署知情同意书前就试验方案及注意事项进行充分沟通,以减少因主动退出导致SF;(5)若筛选步骤纳入烟碱测试、胸片、腹部B超检查,建议招募更多受试者;(6)对代谢明确会受到吸烟影响的药物,建议执行烟碱测试。

作为一项回顾性研究,本研究存在一些不足:部分PⅠCT未详细记录SF原因及例数被排除,或仅记录了SF的原因类别,如VS异常,但并未明确异常的具体指标(如血压或脉搏),导致在计算具体指标的ER时,排除了部分数据;由于数据有限,未能进一步比较不同性别间SF的原因差异。

近年来,随着我国医疗卫生产业的快速发展,对新药临床试验的需求大幅增加,以HS为研究对象的PⅠCT也日益增多。新药临床研发往往投入巨大,保障筛选过程顺利、高效完成,不仅可以节约经济成本,还可加快研发速度。本研究报告了HS筛选失败的原因和影响因素,并给出了优化建议,对未来开展PⅠCT中HS筛选工作具有一定的指导意义。

作者贡献声明  张莉  数据收集,论文撰写和修订。孟现民  研究设计,数据整理,论文修订。董平  数据分析,论文修订。王斌  研究设计,论文修订。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
国家药品监督管理局药品审评中心. 2020年度药品审评报告[EB/OL]. (2021-06-21)[2021-12-3]. https://www.nmpa.gov.cn/xxgk/fgwj/gzwj/gzwjyp/20210621142436183.html.
[2]
苏娴, 姚珠星, 王海学, 等. 2020年中国药物临床试验进展分析[J]. 中国食品药品监管, 2021(10): 14-20. [CNKI]
[3]
国家药品监督管理局药品审评中心. 2019年度药品审评报告[EB/OL]. (2020-07-30)[2021-12-3]. https://www.nmpa.gov.cn/directory/web/nmpa/xxgk/fgwj/gzwj/gzwjyp/20200731114330106.html.
[4]
WANG Z, CHEN G, LIU X, et al. The motivations, barriers, and sociodemographic characteristics of healthy Chinese volunteers in phase Ⅰ research[J]. Eur J Clin Pharmacol, 2021, 77(4): 557-568. [DOI]
[5]
WESTBLOM TU, BELSHE RB, GORSE GJ, et al. Characteristics of a population volunteering for human immunodeficiency virus immunization. NIAID AIDS Clinical Trials Network[J]. Int J STD AIDS, 1990, 1(2): 126-128. [DOI]
[6]
KHAN AY, PRESKORN SH, BAKER B. Effect of study criteria on recruitment and generalizability of the results[J]. J Clin Psychopharmacol, 2005, 25(3): 271-275. [DOI]
[7]
TISHLER CL, BARTHOLOMAE S. The recruitment of normal healthy volunteers: a review of the literature on the use of financial incentives[J]. J Clin Pharmacol, 2002, 42(4): 365-375. [DOI]
[8]
STUNKEL L, GRADY C. More than the money: a review of the literature examining healthy volunteer motivations[J]. Contemp Clin Trials, 2011, 32(3): 342-352. [DOI]
[9]
ALMEIDA L, AZEVEDO B, NUNES T, et al. Why healthy subjects volunteer for phase Ⅰ studies and how they perceive their participation?[J]. Eur J Clin Pharmacol, 2007, 63(11): 1085-1094. [DOI]
[10]
汪旻晖, 贾元威, 沈杰, 等. 药物Ⅰ期临床试验中受试者筛选失败及脱落原因分析探讨[J]. 中国新药杂志, 2020, 29(19): 2200-2204. [DOI]
[11]
李鹏飞, 赵志霞, 张希涛, 等. Ⅰ期临床研究中健康受试者筛选成败的原因分析[J]. 中国临床药理学杂志, 2019, 35(13): 1391-1394. [CNKI]
[12]
韩帅玮琦, 赵侠, 周颖, 等. 全国联网临床研究志愿者数据库建设与效果分析[J]. 中国临床药理学杂志, 2020, 36(13): 1879-1883. [CNKI]
[13]
龚诗立, 王春华, 宋岩, 等. 化学仿制药生物等效性试验中常见筛选失败原因分析[J]. 中国临床药理学与治疗学, 2019, 24(03): 283-287. [CNKI]
[14]
王菊勇, 李雪, 陈潮, 等. 新药Ⅰ期临床试验健康受试者筛选失败原因分析[J]. 中国医药导刊, 2018, 20(12): 760-764. [DOI]
[15]
苏健芬, 郭理宁, 谭玉英, 等. 生物等效性试验健康受试者筛选失败原因分析及对策[J]. 今日药学, 2021, 31(10): 792-796. [DOI]
[16]
陈丽丽, 潘芸芸, 叶嘉俊, 等. 某院生物等效性试验健康受试者筛选失败原因分析[J]. 今日药学, 2022, 32(4): 318-320. [CNKI]
[17]
武艳芝, 杨五小, 吴宁, 等. 我院Ⅰ期临床试验受试者筛选状况分析[J]. 中国药物与临床, 2021, 21(8): 1395-1396. [CNKI]
[18]
GOGTAY N, THATTE U, KULKARNI P. Frequency and causes for exclusion from randomization of healthy volunteers screened for a phase 1 study in India[J]. Natl Med J India, 2012, 25(1): 18-20.
[19]
OMOSA-MANYONYI G, JAOKO W, ANZALA O, et al. Reasons for ineligibility in phase 1 and 2A HIV vaccine clinical trials at Kenya AIDS vaccine initiative (KAVI), Kenya[J]. PLoS One, 2011, 6(1): e14580. [DOI]
[20]
ROUX C, CHEVASSUS H, FARRET A, et al. Selecting healthy volunteers in specific populations: a retrospective analysis of clinical and laboratory screening[J]. Fundam Clin Pharmacol, 2010, 24(1): 121-127. [DOI]
[21]
ROSENKRANZ D, BÜNGER J, HOFFMEYER F, et al. How healthy is healthy?comparison between self-reported symptoms and clinical outcomes in connection with the enrollment of volunteers for human exposure studies on sensory irritation effects[J]. Adv Exp Med Biol, 2020, 1271: 49-59.
[22]
黄淑平, 忻平, 胡雪芹, 等. 某高校新生体检结果分析[J]. 中国校医, 2020, 34(1): 18-20. [CNKI]
[23]
高成兵, 黄萍. 2015—2018年昆明市某体检机构新入职大学生体检结果分析[J]. 应用预防医学, 2020, 26(4): 328-330. [CNKI]
[24]
张利娟, 施克文. 大学新生入学体检结果提示健康管理的重要性[J]. 中国公共卫生管理, 2017, 33(3): 421-422. [CNKI]
[25]
熊祥玲, 赵江, 陈宏伟, 等. 2011-2013年大学新生健康体检结果分析[J]. 现代预防医学, 2015, 42(20): 3733-3735, 3779. [CNKI]
[26]
WILSON KM, MOSS A, LOWARY M, et al. Smoking behaviors among tobacco-using parents of hospitalized children and association with child cotinine level[J]. Hosp Pediatr, 2021, 11(1): 17-24.
[27]
KIM J, SHIM IK, WON SR, et al. Characterization of urinary cotinine concentrations among non-smoking adults in smoking and smoke-free homes in the Korean national environmental health survey (KoNEHS) cycle 3 (2015-2017)[J]. BMC Public Health, 2021, 21(1): 1324.
[28]
NADA A, BAXTER S, LORAAS E, et al. Incidence and predictors of screen failures due to positive urine tests for alcohol, drugs of abuse, and cotinine among normal healthy research volunteers (NHRVs): analysis of data from 687 NHRVs screened at a large clinical pharmacology unit in the United States[J]. Am J Ther, 2008, 15(3): 214-220.
[29]
ZHONG P, CHEN H, LUO X, et al. Establishment of reference intervals of biochemical analytes for healthy Chinese volunteers during the screening process in clinical pharmacology trials[J]. Eur J Clin Pharmacol, 2020, 76(9): 1227-1235.
[30]
SHIMIZU H, NISHIMURA Y, SHIIDE Y, et al. Bioequivalence study of oral suspension and intravenous formulation of edaravone in healthy adult subjects[J]. Clin Pharmacol Drug Dev, 2021, 10: 1188-1197.
[31]
RANJAN R, AGARWAL NB, KAPUR P, et al. Factors influencing participation of healthy volunteers in clinical trials: findings from a cross-sectional study in Delhi, North India[J]. Patient Prefer Adherence, 2019, 13: 2007-2015. [URI]
[32]
PRAKASH VS, MANSUKHANI NA, HELENOWSKI IB, et al. Sex Bias in interventional clinical trials[J]. J Womens Health (Larchmt), 2018, 27(11): 1342-1348.
[33]
CHEN SC, SINAII N, BEDARIDA G, et al. Phase 1 healthy volunteer willingness to participate and enrollment preferences[J]. Clin Trials, 2017, 14(5): 537-546.
[34]
WALKER RL, COTTINGHAM MD, FISHER JA. Serial participation and the ethics of phase 1 healthy volunteer research[J]. J Med Philos, 2018, 43(1): 83-114.
[35]
国家统计局. 第七次全国人口普查主要数据情况[EB/OL]. (2021-05-11)[2021-12-3]. http://www.stats.gov.cn/ztjc/zdtjgz/zgrkpc/dqcrkpc/ggl/202105/t20210519_1817693.html.
[36]
李国昌, 陈春雁, 杨明义. 交沙霉素在中国汉族、维吾尔族及哈萨克族中的药代动力学比较[J]. 药学学报, 1997(3): 72-74. [CNKI]
[37]
XIA DY, WANG YH, GUO T, et al. Pharmacokinetics of tramadol in a diverse healthy Chinese population[J]. J Clin Pharm Ther, 2012, 37(5): 599-603.
[38]
WU KH, GUO T, DENG CH, et al. Population pharmacokinetics of modafinil acid and estimation of the metabolic conversion of modafinil into modafinil acid in 5 major ethnic groups of China[J]. Acta Pharmacol Sin, 2012, 33(11): 1401-1408.
[39]
LAI Y, HUANG M, LI H, et al. Distinct genotype distribution and haplotype profiles in MDR1 gene among Chinese Han, Bai, Wa and Tibetan ethnic groups[J]. Pharmazie, 2012, 67(11): 938-941.
[40]
国务院人口普查办公室, 国家统计局人口和就业统计司. 中国2010年人口普查资料[EB/OL]. (2011-07-23)[2021-12-3]. http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm.

文章信息

张莉, 孟现民, 董平, 王斌
ZHANG Li, MENG Xian-min, DONG Ping, WANG Bin
I期临床试验中健康受试者筛选失败原因及影响因素分析
Analysis of reasons for failure in screening healthy subjects in phase I clinical trials
复旦学报医学版, 2023, 50(2): 189-195.
Fudan University Journal of Medical Sciences, 2023, 50(2): 189-195.
Corresponding author
WANG Bin, E-mail: hsbinwang@163.com.
基金项目
上海市“医苑新星”青年医学人才培养资助计划-临床药师项目[沪卫人事(2021)99]
Foundation item
This work was supported by Shanghai Municipal "Rising Stars of Medical Talents" Training Plan for Youth Medical Talents-Clinical Pharmacist Program [SHWSRS(2021)_099]

工作空间