文章快速检索     高级检索
   复旦学报(医学版)  2022, Vol. 49 Issue (5): 765-770      DOI: 10.3969/j.issn.1672-8467.2022.05.019
0
Contents            PDF            Abstract             Full text             Fig/Tab
膝关节骨关节炎治疗的研究进展
王琦 , 易诚青     
上海市浦东医院-复旦大学附属浦东医院骨科 上海 201399
摘要:骨关节炎(osteoarthritis,OA)是一种以关节软骨退行性改变和继发性骨增生为特征的慢性关节疾病,其中以膝关节骨关节炎(knee osteoarthritis,KOA)最为常见。目前针对KOA的非手术治疗仅能达到缓解疼痛、改善功能的目的。积极的手术治疗效果虽好,但假体定位困难,手术难度高,因此急需新的治疗方式以改善患者预后。基于KOA的最新临床研究,本文对膝神经射频消融术、机器人辅助膝关节置换术、生物治疗和激光治疗等4种新的治疗方式开展评述。
关键词膝关节骨关节炎(KOA)    膝关节置换术(KA)    血小板血浆(PRP)    间充质干细胞(MSC)    射频消融    激光治疗    
Research progress in the treatment of knee osteoarthritis
WANG Qi , YI Cheng-qing     
Department of Orthopedics, Shanghai Pudong Hospital-Fudan University Pudong Medical Center, Shanghai 201399, China
Abstract: Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degradation and subchondral bone remodeling, of which knee osteoarthritis (KOA) is the most common. Current non-surgical treatment for KOA aims to alleviate pain and improve function. Although the effect of knee arthroplasty is good, the operation is complex and accompanied by problems such as difficult implant positioning. There is an urgent need for new treatments to improve the prognosis of patients. Based on the latest clinical research of KOA in recent two years, this paper summarizes 4 kinds of new treatment methods including genicular nerve radiofrequency ablation, robot-assisted knee arthroplasty, regenerative medicine and laser therapy.
Key words: knee osteoarthritis (KOA)    knee arthroplasty (KA)    platelet-rich plasma (PRP)    mesenchymal stem cell (MSC)    radiofrequency ablation    laser therapy    

骨关节炎(osteoarthritis,OA)是一种以进行性关节软骨丢失、软骨下骨增生、骨赘形成、滑膜炎症和韧带钙化为特征的常见退行性关节疾病,主要影响以髋关节及膝关节为主的承重关节[1-2]图 1)。根据2015年全球疾病、伤害和风险因素负担研究,OA造成的全球负担中85%来自于膝关节骨关节炎(knee osteoarthritis,KOA)[3]。2005—2015年KOA的发病率上升了32.7%,OA成为影响全球健康损失寿命年(years lived with disability,YLD)的重要因素之一[3]

图 1 正常膝关节与KOA的示意图 Fig 1 Schematic diagram of normal knee and KOA

OA的非手术治疗包括物理治疗、运动疗法、体重控制、药物治疗等,以减轻疼痛和控制症状为主要目的,但治疗效果有限[4]。膝关节置换术(knee arthroplasty,KA)是最终治疗方法,但存在手术难度高、假体定位困难等缺点[5]。最新的KOA治疗方式有神经靶向治疗、机器人辅助手术治疗、再生医学治疗和激光治疗等。本文回顾了2019年1月至2021年12月期间关于KOA治疗的最有影响力的研究,包括手术治疗及非手术治疗,临床研究和基础科学研究,重点关注高质量的随机对照临床实验,现总结如下。

膝神经射频消融靶向治疗  射频消融技术通过热损伤的方式中断疼痛传递信号,已被用于治疗多种慢性疼痛,如三叉神经痛、癌症疼痛和脊柱疼痛,但其在四肢疼痛中的应用仍有待探索[6]。射频消融技术通过皮下细针导入,可靶向阻断外侧膝上神经、内侧膝上神经和内侧膝下神经,减轻膝关节疼痛,但治疗效果仍有待商榷[7]。Kumaran等[8]在双盲随机对照实验中将患者分为射频消融治疗组、射频消融安慰组和保守治疗组,旨在消除射频消融治疗产生的心理影响下比较保守治疗与射频消融治疗的效果。结果显示,射频消融治疗组的术后功能恢复和疼痛缓解都明显优于其他两组,证明射频消融治疗可在短期内改善KOA患者的疼痛和功能。

无论采用手术治疗还是非手术治疗,治疗的安全性都是首要考虑指标。Hunter等[9]在一项前瞻性多中心临床研究中进行了长达24个月的随访,在12、18和24个月时通过疼痛数值评估量表和牛津膝关节评分,对比评估射频消融和类固醇关节注射的治疗效果。结果显示,射频消融治疗优于类固醇关节注射治疗,可提供持续的疼痛缓解,显著改善膝关节功能,肯定了射频消融治疗的安全性。Chen等[10]比较了射频消融和透明质酸治疗效果和安全性,经过术后12个月的随访,发现两种治疗方式都安全可靠,射频消融治疗可以提供更强的疼痛缓解和更显著的功能恢复,治疗效果优于透明质酸治疗。

射频消融技术又分为持续消融术和脉冲射频消融术。Hong等[11]对比了持续射频消融、脉冲射频消融以及透明质酸关节内注射的疗效。虽然短期内射频消融技术可以明显减轻疼痛,但随访过程中疼痛出现反弹,术后6个月疼痛加重。而传统持续性射频消融可长期缓解疼痛且效果优于射频消融。Santana-Pineda等[12]在6个月随访中,发现持续射频消融技术在疼痛缓解和功能恢复方面优于脉冲射频消融技术。

射频消融的最佳引导方式在治疗选择中也存在争议。Kim等[13]通过超声与透视引导下膝神经阻滞的治疗效果进行前瞻性随机比较,将80名患者随机分为超声组和透视组,在术后1个月和3个月进行疼痛定值、功能评估和安全性的随访。结果显示,超声组和透视组在疼痛缓解、功能及安全性上的差异均无统计学意义,但考虑到辐射暴露影响,仍推荐采用超声引导的方式。

全膝关节置换术(total knee arthroplasty,TKA)后的疼痛管理非常有挑战性,联合使用射频消融神经阻滞或可获得更好的疗效。然而,Mishra等[14]采用双盲对照研究对比接受射频消融和对照组的TKA术后的疼痛缓解效果,发现提前采用射频消融进行神经阻断并不会影响患者的术后疼痛和功能恢复。

射频消融技术的手术治疗方式仍在不断创新。Mohamed等[15]采取三针技术分别对应于上外侧、上内侧和下内侧膝神经,对比传统的单针技术,短期随访中三针技术的疼痛缓解和功能恢复效果更佳。

KA的精准治疗  在KA中,假体位置对齐、关节力线维护、软组织保护等是手术的难点,也是预后相关的重要因素[16]。通过软组织松解和假体定位实现适当的器械对齐是手术成功的关键,机器人系统的开发可以进一步提高手术的准确性和假体定位的精准度[17]

在TKA中,采用机器人辅助可以提高手术疗效和患者满意度。Kayani等[18]通过前瞻性队列研究证明,机器人辅助TKA治疗组的术后疼痛更轻,早期功能恢复更好,住院时间更短。Smith等[19]研究证实,机器人辅助TKA可以提供毫米级的实时信息,进行准确的骨切割,减少软组织损伤,实现假体的精准定位,并提高患者满意度。

机器人辅助技术的准确性也为单髁/双髁方法进行膝关节表面置换提供了新可能。单髁关节置换术可以保留交叉韧带和更多骨量,恢复更快,失血更少,并接近正常的动力学[20]。但手术难度较高,假体定位不准确容易导致高失败率和不良预后[20]。机器人辅助技术可以降低手术难度,提供更准确的假体定位。Iñiguez等[21]研究提示,采用机器人辅助系统不仅可以更准确定位假体,而且能预测股骨假体大小。Park等[22]证实机器人辅助能够实现精确植入并减少术中放射暴露。Zambianchi等[23]对机械臂辅助内外侧单室KA术后患者进行了3年的随访研究,证明机器人辅助可以得到较高生存率和长期满意度。

采用机器人辅助的双髁KA可以更好地保留交叉韧带,有助于术后功能恢复。Banger等[24]在前瞻性随机对照研究中,对比机械臂辅助的双单室KA与常规器械对齐的TKA,发现机器人辅助的双单室KA在冠状面、矢状面和轴向面更好地保持了膝关节的自然解剖,从而保持正常的关节运动。但是,Blyth等[25]对比机械臂辅助的双单室KA与常规器械对齐的TKA的短期临床效果,临床预后差异无统计学意义。

KA术后翻修问题也是临床关注重点。Banger等[26]通过长期前瞻性对照临床研究发现,在长达5年的随访中,机器人辅助组不仅术后功能恢复极佳,而且没有出现需要再次手术干预的情况,而手工组9%的患者需要再次手术干预。采用机械人辅助KA可以减轻术中软组织损伤,从而减轻术后的全身炎症反应。Kayan等[27]通过随机对照研究发现,机器人组的医源性关节周围软组织损伤、股骨和胫骨骨损伤均有所减少,术后短时间内全身炎症反应显著降低。

KOA的生物治疗

血小板血浆  血小板血浆(platelet-rich plasma,PRP)是一种含有高浓度血小板的自体血液产品[28],可在KOA治疗中释放生长因子及其他因子,包括血小板衍生生长因子、转化生长因子-β、I型胰岛素样生长因子、血管内皮生长因子等,促进软骨细胞再生和诱导间充质干细胞分化成成软骨细胞[29]。PRP治疗KOA的优点有:(1)微创,制备速度快,使用相对容易;(2)治疗费用低;(3)自体产品,安全性高[30]。Xu等[31]在临床研究中对比了透明质酸和PRP的疗效,发现短期内PRP可以抑制组织微环境内的IL-1β、肿瘤坏死因子-α、基质金属蛋白酶-3和金属蛋白酶-1等因子,显著缓解疼痛和延缓滑膜增生,临床效果优于透明质酸组。Di Martino等[32]进行了长达5年的随机对照双盲临床实验,比较PRP和透明质酸的长期治疗效果:短期内,两者均有明显效果,PRP组更优;长期来看,两者治疗效果均出现下降,而PRP治疗更适用于短期KOA治疗。

间充质干细胞  间充质干细胞(mesenchymal stem cell,MSC)也叫间充质基质细胞,最早发现于骨髓中,之后在外周血、脐带血、骨骼肌、心脏和脂肪组织中也有发现[33],具有多能性,能够自我生成,并通过相关信号分化为不同的组织特异性成体细胞,如成骨细胞、软骨细胞和脂肪细胞[34]。在KOA治疗中,关节内注射MSC进行免疫调节,抑制炎症,并具有软骨形成的分化潜力,可诱导组织修复[35]

关节内注射MSC是治疗KOA的一种安全有效的方法。Freitag等[36]通过12个月的随访观察,发现MSC治疗的患者中无严重不良事件发生,KOA术后疼痛和关节功能得到极大改善,MRI观察到KOA未继续进展。Lee等[37]在Ⅱb期的随机对照临床研究中证实,自体脂肪MSC关节内注射可改善KOA患者的关节功能,显著缓解疼痛,随访6个月时无不良事件发生。

关节内注射MSC也是KOA长期治疗的有效方法。Park等[38]评估了一种由同种异体人脐带血源MSC制成的新型药物对膝关节软骨再生的安全性和有效性。12周时关节镜下观察到成熟的修复组织,24周时疼痛和关节功能得到改善,3年时MRI显示软骨持续再生,7年后未发现成骨或肿瘤发生。由此证明以干细胞为基础的新型药物的应用安全有效,且对KOA有持久的关节软骨再生作用。

软骨下骨内注射MSC可治疗KOA,通过刺激软骨下纤维软骨的生成,有效减轻疼痛。Hernigou等[39]通过随机对照实验研究节腔内和软骨下骨内注射MSC的疗效,发现相比于在膝关节内注射MSC,软骨下骨植入MSC能持续缓解KOA的症状。

MSC还可与其他药物联合使用。将MSC联合同种异体软骨植入治疗膝关节OA,疗效明显优于单独使用MSC[40]。联合使用MSC和PRP,用药后及随访期间均未出现不良反应,KOA患者的疼痛和功能都得到极大改善。

KOA的激光治疗  激光治疗(laser therapy,LT)是一种无创、无痛的治疗方法,可以增加局部血液循环,改善组织再生,减少疼痛和水肿,是治疗KOA的新方法[42]

低强度激光治疗基于生物刺激理论,使用一束低功率激光束,直接、聚焦于穴位表面,可以改善血液循环,减轻疼痛,减少炎症和肿胀[43]。de Matos Brunelli等[44]采用低剂量激光进行辅助治疗,KOA患者的膝关节疼痛得到极大缓解,膝关节功能显著恢复。

高强度激光治疗是一种无痛放射治疗方法。与低强度激光治疗相比,高强度激光治疗可应用到更深更大的关节[45]。Lamo-Espinosa等[41]研究发现,高强度激光可以改变组织中缓激肽和组胺的释放,增加血清素和β-内啡肽的水平,起到镇痛作用。激光具有光化学和光热效应,可以增加血流量和淋巴引流来消肿。高强度激光治疗还可以减少软骨损伤,增加软骨生成[46]

激光治疗可与其他方法的联合使用治疗KOA。Ammendolia等[47]比较了联合使用葡萄糖胺和单纯激光治疗,证明激光与硫酸葡萄糖胺联合使用可实现长期治疗KOA的作用。

结语  KOA是最常见的慢性关节疾病,治疗目标是减轻症状和提高生活质量。膝神经射频消融靶向治疗是一种安全、精准、微创的治疗方法,常见方法是通过单针或三针靶向作用于外侧膝上神经、内侧膝上神经和内侧膝下神经,可有效缓解膝关节疼痛。其中,持续射频消融的治疗效果更佳。机器人辅助KA可提供精准的骨切割及假体定位,患者住院时间更短、术中失血量和软组织损伤更少,且大大降低手术难度,有利于单髁或双髁KA的推广。激光治疗是一种无创、无痛的治疗方法,既可以促进血液循环,又可以作用于特殊的穴位。再生医学具有极大的发展前景。PRP关节内注射的效果优于透明质酸或类固醇药物关节内注射。PRP属于自体血液产品,安全性高,排异性低,但只适用短期的治疗中。MSC可通过免疫调节抑制炎症发展,并具有分化能力,可进行组织修复,因此具有逆转KOA的潜力。再生医学的发展为保守治疗提供了可能性,不仅能缓解疼痛,而且能延缓KOA的进展。

作者贡献声明  王琦  文献查阅,制图,论文构思、撰写和修订。易诚青  论文指导、修订和终审。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
CHEN D, SHEN J, ZHAO W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044. [DOI]
[2]
NELSON AE. Osteoarthritis year in review 2017: clinical[J]. Osteoarthritis Cartilage, 2018, 26(3): 319-325. [DOI]
[3]
GBD 2015 DISEASE AND INJURY INCIDENCE AND PREVALENCE COLLABORATORS. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015[J]. Lancet, 2016, 388(10053): 1545-1602. [DOI]
[4]
MCALINDON TE, BANNURU RR, SULLIVAN MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis[J]. Osteoarthritis Cartilage, 2014, 22(3): 363-88. [DOI]
[5]
APOSTU D, LUCACIU O, MESTER A, et al. Systemic drugs with impact on osteoarthritis[J]. Drug Metab Rev, 2019, 51(4): 498-523. [DOI]
[6]
MALIK A, SIMOPOLOUS T, ELKERSH M, et al. Percutaneous radiofrequency lesioning of sensory branches of the obturator and femoral nerves for the treatment of non-operable hip pain[J]. Pain Physician, 2003, 6(4): 499-502.
[7]
CHOI WJ, HWANG SJ, SONG JG, et al. Radiofrequency treatment relieves chronic knee osteoarthritis pain: a double-blind randomized controlled trial[J]. Pain, 2011, 152(3): 481-487. [DOI]
[8]
KUMARAN B, WATSON T. Treatment using 448kHz capacitive resistive monopolar radiofrequency improves pain and function in patients with osteoarthritis of the knee joint: a randomised controlled trial[J]. Physiotherapy, 2019, 105(1): 98-107. [DOI]
[9]
HUNTER C, DAVIS T, LOUDERMILK E, et al. Cooled radiofrequency ablation treatment of the genicular nerves in the treatment of osteoarthritic knee pain: 18- and 24-month results[J]. Pain Pract, 2020, 20(3): 238-246. [DOI]
[10]
CHEN AF, KHALOUF F, ZORA K, et al. Cooled radiofrequency ablation provides extended clinical utility in the management of knee osteoarthritis: 12-month results from a prospective, multi-center, randomized, cross-over trial comparing cooled radiofrequency ablation to a single hyaluronic acid injection[J]. BMC Musculoskelet Disord, 2020, 21(1): 363. [DOI]
[11]
HONG T, LI GX, HAN ZK, et al. Comparing the safety and effectiveness of radiofrequency thermocoagulation on genicular nerve, intraarticular pulsed radiofrequency with steroid injection in the pain management of knee osteoarthritis[J]. Pain Physician, 2020, 23(4S): S295-S304.
[12]
SANTANA-PINEDA MM, VANLINTHOUT LE, SANTANA-RAMÍREZ S, et al. A randomized controlled trial to compare analgesia and functional improvement after continuous neuroablative and pulsed neuromodulative radiofrequency treatment of the genicular nerves in patients with knee osteoarthritis up to one year after the intervention[J]. Pain Med, 2021, 22(3): 637-652. [DOI]
[13]
KIM DH, LEE MS, LEE S, et al. A prospective randomized comparison of the efficacy of ultrasound- vs fluoroscopy-guided genicular nerve block for chronic knee osteoarthritis[J]. Pain Physician, 2019, 22(2): 139-146.
[14]
MISHRA P, EDWARDS D, HUNTOON M, et al. Is preoperative genicular radiofrequency ablation effective for reducing pain following total knee arthroplasty?A pilot randomized clinical trial[J]. Reg Anesth Pain Med, 2021, 46(9): 752-756. [DOI]
[15]
MOHAMED OS, OMAR SM, GABER AF, et al. Three needles approach-a new technique of genicular nerves radiofrequency ablation for pain relief in advanced chronic knee osteoarthritis: a randomized trial[J]. Pain Physician, 2021, 24(7): E1067-E1074.
[16]
PLATE JF, MOFIDI A, MANNAVA S, et al. Achieving accurate ligament balancing using robotic-assisted unicompartmental knee arthroplasty[J]. Adv Orthop, 2013, 2013: 837167.
[17]
VAN-DER-LIST JP, CHAWLA H, JOSKOWICZ L, et al. Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: a systematic review with meta-analysis[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3482-3495. [DOI]
[18]
KAYANI B, KONAN S, TAHMASSEBI J, et al. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study[J]. Bone Joint J, 2018, 100-B(7): 930-937. [DOI]
[19]
SMITH AF, ECCLES CJ, BHIMANI SJ, et al. Improved patient satisfaction following robotic-assisted total knee arthroplasty[J]. J Knee Surg, 2021, 34(7): 730-738. [DOI]
[20]
KWON HM, KANG KT, KIM JH, et al. Medial unicompartmental knee arthroplasty to patients with a ligamentous deficiency can cause biomechanically poor outcomes[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(9): 2846-2853. [DOI]
[21]
IÑIGUEZ M, NEGRÍN R, DUBOY J, et al. Robot-assisted unicompartmental knee arthroplasty: increasing surgical accuracy?A cadaveric study[J]. J Knee Surg, 2021, 34(6): 628-634. [DOI]
[22]
PARK KK, HAN CD, YANG IH, et al. Robot-assisted unicompartmental knee arthroplasty can reduce radiologic outliers compared to conventional techniques[J]. PLoS One, 2019, 14(12): e0225941. [DOI]
[23]
ZAMBIANCHI F, FRANCESCHI G, RIVI E, et al. Clinical results and short-term survivorship of robotic-arm-assisted medial and lateral unicompartmental knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(5): 1551-1559. [DOI]
[24]
BANGER MS, JOHNSTON WD, RAZII N, et al. Robotic arm-assisted bi-unicompartmental knee arthroplasty maintains natural knee joint anatomy compared with total knee arthroplasty: a prospective randomized controlled trial[J]. Bone Joint J, 2020, 102-B(11): 1511-1518. [DOI]
[25]
BLYTH MJ, BANGER MS, DOONAN J, et al. Early outcomes after robotic arm-assisted bi-unicompartmental knee arthroplasty compared with total knee arthroplasty: a prospective, randomized controlled trial[J]. Bone Joint J, 2021, 103-B(10): 1561-1570. [DOI]
[26]
BANGER M, DOONAN J, ROWE P, et al. Robotic arm-assisted versus conventional medial unicompartmental knee arthroplasty: five-year clinical outcomes of a randomized controlled trial[J]. Bone Joint J, 2021, 103-B(6): 1088-1095. [DOI]
[27]
KAYANI B, TAHMASSEBI J, AYUOB A, et al. A prospective randomized controlled trial comparing the systemic inflammatory response in conventional jig-based total knee arthroplasty versus robotic-arm assisted total knee arthroplasty[J]. Bone Joint J, 2021, 103-B(1): 113-122. [DOI]
[28]
DEMANGE MK, SISTO M, RODEO S. Future trends for unicompartmental arthritis of the knee: injectables & stem cells[J]. Clin Sports Med, 2014, 33(1): 161-74. [DOI]
[29]
QIAN Y, HAN Q, CHEN W, et al. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration[J]. Front Chem, 2017, 5: 89. [DOI]
[30]
BERNEY M, MCCARROLL P, GLYNN L, et al. Platelet-rich plasma injections for hip osteoarthritis: a review of the evidence[J]. Ir J Med Sci, 2021, 190(3): 1021-1025. [DOI]
[31]
XU Z, HE Z, SHU L, et al. Intra-articular platelet-rich plasma combined with hyaluronic acid injection for knee osteoarthritis is superior to platelet-rich plasma or hyaluronic acid alone in inhibiting inflammation and improving pain and function[J]. Arthroscopy, 2021, 37(3): 903-915. [DOI]
[32]
DI MARTINO A, DI MB, PAPIO T, et al. Platelet-rich plasma versus hyaluronic acid injections for the treatment of knee osteoarthritis: results at 5 years of a double-blind, randomized controlled trial[J]. Am J Sports Med, 2019, 47(2): 347-354. [DOI]
[33]
DING DC, SHYU WC, LIN SZ. Mesenchymal stem cells[J]. Cell Transplant, 2011, 20(1): 5-14. [DOI]
[34]
BARRY FP, MURPHY JM. Mesenchymal stem cells: clinical applications and biological characterization[J]. Int J Biochem Cell Biol, 2004, 36(4): 568-84. [DOI]
[35]
PHINNEY DG, PITTENGER MF. Concise review: MSC-derived exosomes for cell-free therapy[J]. Stem Cells, 2017, 35(4): 851-858. [DOI]
[36]
FREITAG J, BATES D, WICKHAM J, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial[J]. Regen Med, 2019, 14(3): 213-230. [DOI]
[37]
LEE WS, KIM HJ, KIM Kl, et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase Ⅱb, randomized, placebo-controlled clinical trial[J]. Stem Cells Transl Med, 2019, 8(6): 504-511. [DOI]
[38]
PARK YB, HA CW, LEE CH, et al. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up[J]. Stem Cells Transl Med, 2017, 6(2): 613-621. [DOI]
[39]
HERNIGOU P, BOUTHORS C, BASTARD C, et al. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years?A randomized study[J]. Int Orthop, 2021, 45(2): 391-399. [DOI]
[40]
KIM YS, CHUNG PK, SUH DS, et al. Implantation of mesenchymal stem cells in combination with allogenic cartilage improves cartilage regeneration and clinical outcomes in patients with concomitant high tibial osteotomy[J]. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 544-554. [DOI]
[41]
LAMO-ESPINOSA JM, BLANCO JF, SÁNCHEZ M, et al. Phase Ⅱ multicenter randomized controlled clinical trial on the efficacy of intra-articular injection of autologous bone marrow mesenchymal stem cells with platelet rich plasma for the treatment of knee osteoarthritis[J]. J Transl Med, 2020, 18(1): 356. [DOI]
[42]
ABDELBASSET WK, NAMBI G, ELSAYED SH, et al. Short-term clinical efficacy of the pulsed Nd: YAG laser therapy on chronic nonspecific low back pain: a randomized controlled study[J]. Medicine (Baltimore), 2020, 99(36): e22098. [DOI]
[43]
COTLER HB, CHOW RT, HAMBLIN MR, et al. The use of low level laser therapy (LLLT) for musculoskeletal pain[J]. MOJ Orthop Rheumatol, 2015, 2(5): 00068.
[44]
DE-MATOS-BRUNELLI BRAGHIN R, LIBARDI EC, JUNQUEIRA C, et al. The effect of low-level laser therapy and physical exercise on pain, stiffness, function, and spatiotemporal gait variables in subjects with bilateral knee osteoarthritis: a blind randomized clinical trial[J]. Disabil Rehabil, 2019, 41(26): 3165-3172. [DOI]
[45]
ORDAHAN B, KARAHAN AY, KAYDOK E. The effect of high-intensity versus low-level laser therapy in the management of plantar fasciitis: a randomized clinical trial[J]. Lasers Med Sci, 2018, 33(6): 1363-1369. [DOI]
[46]
AKALTUN MS, ALTINDAG O, TURAN N, et al. Efficacy of high intensity laser therapy in knee osteoarthritis: a double-blind controlled randomized study[J]. Clin Rheumatol, 2021, 40(5): 1989-1995. [DOI]
[47]
AMMENDOLIA A, MAROTTA N, MARINARO C, et al. The synergic use of the high power laser therapy and glucosamine sulfate in knee osteoarthritis: a randomized controlled trial[J]. Acta Biomed, 2021, 92(3): e2021237.

文章信息

王琦, 易诚青
WANG Qi, YI Cheng-qing
膝关节骨关节炎治疗的研究进展
Research progress in the treatment of knee osteoarthritis
复旦学报医学版, 2022, 49(5): 765-770.
Fudan University Journal of Medical Sciences, 2022, 49(5): 765-770.
Corresponding author
YI Cheng-qing, E-mail: ycq3000@126.com.
基金项目
上海市浦东新区卫健委临床高原学科项目(PWYgy2021-04);上海市浦东新区卫健委联合攻关项目(PW2021D-08)
Foundation item
This work was supported by the Outstanding Clinical Discipline Project of Pudong New Area Health Committee of Shanghai (PWYgy2021-04) and the Joint Effort Project of Pudong New Area Health Commission of Shanghai (PW2021D-08)

工作空间