2. 上海赛傲生物技术有限公司 上海 200062;
3. 同济大学附属东方医院骨科 上海 200120
2. Shanghai Saiao Biotechnology Co., Ltd., Shanghai 200062, China;
3. Department of Orthopedics, East Hospital, Tongji University, Shanghai 200120, China
骨关节炎(osteoarthritis,OA)是一种常见的退行性关节紊乱疾病[1-2],发病率逐渐升高,病理变化主要表现为关节软骨的磨损退化、骨赘形成、软骨下骨增厚、滑膜炎症以及关节肥大[3-5]。目前针对骨关节炎的传统疗法主要有药物治疗和手术治疗。药物治疗主要是使用非甾体类抗炎药物、蛋白酶抑制剂、疾病修饰类骨关节炎药物等[6];手术方法主要是关节镜手术和人工关节置换术等[7-8]。药物治疗可以减轻炎症和疼痛,但不能逆转关节炎的进展,同时长时间药物治疗伴有一定的副作用[9];手术治疗具有一定的局限性,关节镜手术具有感染的风险,人工关节置换术存在费用高、恢复周期长、不适合运动量较大的人群等限制[10]。基于此,临床急需一种可替代的治疗方法。近年来随着再生医学的发展,间充质干细胞治疗OA的研究越来越多。
间充质干细胞是一群具有自我更新和多向分化潜能的细胞,其向软骨细胞分化的潜能为OA的治疗开辟了新的道路。间充质干细胞可以来源于骨髓、脐带、滑膜以及脂肪组织[11-12],其中脂肪干细胞来源广泛、增殖能力和软骨分化潜能强、可以通过旁分泌减轻炎症来缓解OA,因而被广泛应用于临床及基础研究[13-15]。目前研究较多的脂肪干细胞主要是皮下脂肪干细胞(subcutaneous adipose-derived stem cells,Sc-ASCs)和内脏脂肪干细胞(visceral adipose-derived stem cells,V-ASCs),人V-ASCs增殖能力优于Sc-ASCs,但成脂分化、成软骨分化潜能较差,且人Sc-ASCs对大鼠OA的疗效优于V-ASCs[16]。除此之外,人工关节置换术切除的废弃物髌下脂肪垫(infrapatellar fat pad,IPFP)来源的脂肪干细胞在体外能分化成软骨和成骨细胞,具有促进软骨和骨缺损修复的潜能[17],成为再生医学的研究热点。
IPFP是膝关节内髌骨肌腱、股骨髁和胫骨平台之间呈三角形的脂肪组织,主要生理功能是减少关节运动时摩擦,保护膝关节。IPFP含有大量的干细胞且其获取不会对患者产生二次伤害。已有研究报导IPFP-ASCs有较强的增殖能力和分化潜能,IPFP-ASCs软骨分化和成骨分化潜能优于骨髓间充质干细胞和滑膜间充质干细胞[18]。同时,IPFP-ASCs通过分泌血小板源性生长因子(platelet-derived growth factor,PDGF)、血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)等细胞因子,与TGF-β共同发挥抗凋亡作用,从而对膝关节产生修复作用。IPFP-ASCs的表面标记物与膝关节周围的其他细胞相似,可以与其他合成移植物一起植入膝关节减少免疫排斥反应[17],因此IPFP-ASCs成为自体或异体干细胞移植的种子细胞,再生医学和组织工程的研究热点。基于IPFP-ASCs在增殖、分化、抗凋亡等方面的特点,本研究比较人IPFP-ASCs与Sc-ASCs的特性及对大鼠OA的疗效,为选择不同解剖位置来源的脂肪干细胞治疗OA提供理论依据。
材料和方法仪器设备 CO2培养箱购自美国Thermo Fisher Scientific公司;离心机购自德国Eppendorf AG公司;Western blot电泳槽及相关设备购自美国Bio-Rad公司;倒置荧光显微镜购自日本Olympus公司;超净工作台购自新加坡ESCO公司。
材料与试剂 Ⅷ型胶原酶、生物素、青霉素、链霉素、地塞米松、3-异丁基-1甲基黄嘌呤、胰岛素、油红购自美国Sigma-Alderich公司;F12/DMEM培养基、胎牛血清FBS、胰酶购自美国Gibco BRL公司;蛋白预染Marker购自美国Bio-Rad公司;ECL显影液购自上海圣尔生物科技有限公司;阿尔新蓝购自上海生命科学有限公司;EdU Flow Cytometry Assay Kits试剂盒购自赛默飞世尔科技公司;三氯甲烷、异丙醇、75%乙醇、无水乙醇购自国药集团化学有限公司。
临床样品的收集 人体皮下脂肪组织和髌下脂肪垫来自上海市东方医院未患代谢性相关疾病患者,患者年龄50~80岁,BMI 23~30 kg/m2。本研究获得上海市东方医院人体细胞临床研究伦理委员会批准(批件号【2020】体临审(004)号),并遵循患者知情同意原则。
实验动物 SD雄鼠购自上海杰思捷实验动物有限公司,SPF级动物房饲养,维持12 h/12 h光/暗循环。动物实验均遵循复旦大学实验动物伦理委员会相关规定。
动物造模 40只8周大SD大鼠,每只200 g,大鼠随机分为对照组、内侧半月板不稳术组、皮下脂肪干细胞治疗组、髌下脂肪垫干细胞治疗组,每组10只。手术暴露关节腔,钝性剥离脂肪垫后,切断膝横韧带,游离半月板,构建OA模型。术后3天,每只大鼠每天注射青霉素40万U,术后4周,骨关节腔注射Sc-ASCs和IFPF-ASCs 4×106个细胞,术后10周对大鼠实施安乐死,采集膝关节标本,4%多聚甲醛固定过夜,EDTA脱钙液脱钙1个月,石蜡包埋,进行番红固绿染色。
脂肪干细胞的分离和培养 临床样品脂肪组织PBS漂洗,置于5 mL离心管中,加入0.075%Ⅷ型胶原酶,剪碎至1 mm3小块,37 ℃水浴40 min至无明显组织块,室温,200×g离心5 min,弃上清,PBS漂洗1遍,200×g离心5 min,F12/DMEM培养基重悬转移至培养皿,于37 ℃、5%CO2细胞培养箱培养,12 h后换液。
流式细胞术 体外分离人皮下脂肪组织和髌下脂肪垫血管基质组分(stromal vascular fraction,SVF),用含0.5%胎牛血清的PBS重悬,分别与带荧光标记的单克隆抗体CD34-PE,CD31-PE避光孵育40 min,流式细胞仪检测CD34+,CD31+细胞。
EdU掺入实验 将EdU溶液(0.1 mg/mL)加入细胞上清中,48 h后检测,消化收集细胞,含1%牛血清白蛋白(bovine serum albumin,BSA)的PBS清洗细胞,弃上清,加入100 μL固定液,避光室温15 min,1% BSA的PBS清洗细胞,弃上清,加入100 μL透膜液,室温15 min,加入500 μL抗体反应液,避光室温30 min,1% BSA的PBS清洗细胞,弃上清,加入500 μL PBS,过300目筛网,流式仪上机检测。数据分析采用Total/EdU-细胞比值比较增殖速率,比值越大,EdU+细胞越多,增殖速率越高。
Western blot 30 μg蛋白经10%变性聚丙烯酰胺凝胶电泳分离后,电转移至PVDF膜。将膜用5%脱脂奶粉(TTBS配制)室温封闭1 h,一抗用3%BSA稀释,4 ℃孵育12 h;TTBS洗涤3次,每次10 min,二抗(5%脱脂奶粉稀释)室温孵育1 h,TTBS洗涤3次,每次15 min。ECL显影液孵育2 min,显影拍照。
脂肪干细胞诱导成脂 按上述方法分离得到脂肪干细胞,铺于3.5 cm细胞培养皿,培养基为含10%胎牛血清、1%青霉素和链霉素双抗的F12/DMEM,每隔2天换液。细胞接触抑制2天时,计为第0天,加0.5 mmol/L 3-异丁基-1-甲基黄嘌呤、1 μg/mL胰岛素、1 μmol/L罗格列酮诱导48 h;更换培养基加1 μg/mL胰岛素、1 μmol/L罗格列酮继续诱导48 h;换液,更换培养基F12/DMEM,至第8天脂肪细胞分化成熟。
脂肪干细胞诱导成骨 按上述方法分离得到脂肪干细胞,铺于3.5 cm细胞培养皿,培养基为含10%胎牛血清、1%青霉素和链霉素双抗的F12/DMEM,2天后更换成骨诱导液(F12/DMEM、10%胎牛血清、1%青霉素和链霉素、1 μmol/L地塞米松、50 mmol/L抗坏血酸、20 mmol/L β-甘油磷酸钠),每隔3天换液,诱导分化21天,进行茜素红染色。
脂肪干细胞诱导成软骨 按上述方法分离得到脂肪干细胞,体外培养消化计数,以1×107/mL的密度进行微滴,每滴5 μL,培养基为含10%胎牛血清、1%青霉素和链霉素的F12/DMEM,24 h后,更换成软骨诱导液(F12/DMEM,10%胎牛血清、1%青霉素和链霉素、0.1 μmol/L地塞米松,1% ITS,0.1% VitC、10 ng/mL TGF-β),每隔3天换液,诱导分化21天,进行阿尔新蓝染色。
油红染色 取出培养的细胞,弃培养基,PBS洗3次。4%多聚甲醛固定20 min,PBS洗3次,加入1 mL油红工作液(油红贮存液与去离子水3∶2体积混合,过滤除杂),室温孵育2 h,弃去油红工作液,去离子水洗3次,置于显微镜下观察。配置油红贮存液:称取0.5 g油红O,加入100 mL异丙醇,充分震荡混匀,避光保存。
茜素红染色 取出培养的细胞,弃培养基,PBS洗3次。4%多聚甲醛固定20 min,PBS洗3次,0.5%茜素红溶液染色30 min,弃染液,去离子水洗3次,置于显微镜下观察。
阿尔新蓝染色 取出培养的细胞,弃培养基,PBS洗3次,4%多聚甲醛固定30 min,PBS漂洗3次,0.1 mmol盐酸溶液浸泡5 min pH降至1.0,阿尔新蓝室温孵育过夜,0.1 mmol盐酸溶液漂洗3次去除背景,加入1mL PBS,显微镜观察拍照。
番红固绿染色 取收集的大鼠膝关节样本,置于4%多聚甲醛固定过夜,经3周EDTA脱钙,石蜡包埋,厚度为4 μm,切片以二甲苯脱蜡,经梯度(100%乙醇,95%乙醇,80%乙醇,75%乙醇)脱水,苏木精染核15 min,自来水浸洗,盐酸酒精分色,自来水蓝化15 min,固绿染色15 min,自来水浸洗,1%冰醋酸洗片,番红染色8 min,自来水浸洗,常规脱水,透明,封片。
统计学分析 数据用GraphPad Prism5.0和ImagePro Plus5.0分析处理。统计分析采用Student’s t-test,P < 0.05为差异有统计学意义。
结果IPFP-ASC的分离及三系分化 人髌下脂肪垫经酶消化法分离获得原代脂肪干细胞,贴壁培养2天后,镜下即可观察到培养瓶的底部细胞贴壁生长,形态呈长梭形(图 1A)。人IPFP-ASCs传至P2代,体外诱导其成脂、成骨、成软骨,并进行油红染色、茜红素染色和阿尔新蓝染色。成脂诱导8天后,镜下可观察到大量脂滴,经油红O染色可见大量红色脂滴(图 1B)。成骨诱导21天后,细胞形态发生改变,经茜素红染色可见大量深红色钙结节(图 1C)。成软骨诱导21天,经阿尔新蓝染色可见大片深蓝色的蛋白多糖聚糖(图 1D)。结果显示人IPFP-ASCs呈长梭形,具有多向分化潜能,体外可被诱导成脂肪细胞、骨细胞和软骨细胞。
人Sc-ASCs和IPFP-ASCs的体外特征 从人皮下脂肪组织和髌下脂肪垫中分离脂肪干细胞,体外扩增至P2代,加入EdU溶液,48 h后流式检测EdU+细胞,比较Sc-ASCs和IPFP-ASCs体外增殖能力。结果显示IPFP-ASCs体外增殖能力较Sc-ASCs强(图 2A、2B)。经流式细胞术检测Sc-ASCs和IPFP-ASCs的干细胞表面标记蛋白CD34和血管相关标记蛋白CD31的表达,结果显示Sc-ASCs和IPFP-ASCs差异无统计学意义(图 2C、2D),表明Sc-ASCs和IPFP-ASCs具有相似的生物学特性。
人Sc-ASCs和IPFP-ASCs成软骨潜能 人Sc-ASCs和IPFP-ASCs采用微滴法诱导成软骨细胞,软骨诱导液诱导21天后,阿尔新蓝染色及Western blot比较人Sc-ASCs和IPFP-ASCs体外成软骨潜能。阿尔新蓝染色显示人IPFP-ASCs蓝色软骨细胞团颜色明显深于对照组和Sc-ASCs组(图 3A),表明IPFP-ASCs体外成软骨能力较强。Western blot检测软骨细胞合成标记物SOX9的表达,结果显示IPFP-ASCs SOX9表达明显高于对照组和Sc-ASCs组(图 3B)。阿尔新蓝和Western blot结果一致,表明IPFP-ASCs体外成软骨潜能更强。
人Sc-ASCs和IPFP-ASCs对大鼠OA疗效 研究表明,OA患者关节腔注射自体Sc-ASCs和IPFP-ASCs可以改善炎症和疼痛。为了比较人Sc-ASCs和IPFP-ASCs对大鼠OA的疗效差异,横断大鼠膝横韧带,游离半月板构建大鼠OA模型。术后4周关节腔注射4×106 Sc-ASCs和IPFP-ASCs,术后10周收集大鼠膝关节样本,进行形态学大体观察和番红固绿染色。结果(图 4A)显示,和对照组相比,DMM造模组股骨远端存在骨赘和纤维组织,软骨表面粗糙磨损,造模成功,Sc-ASCs治疗组骨赘减少,IPFP-ASCs治疗组表面较光滑,无明显骨赘生成。番红固绿染色显示,对照组软骨层连续致密,DMM造模组软骨表层不连续,深层纤维化及垂直裂缝到达钙化层,Sc-ASCs治疗组关节面纤维化且软骨浅表层存在垂直裂隙,IPFP-ASCs治疗组软骨层较为连续,仅存在轻微纤维化,表明IPFP-ASCs治疗组疗效更好(图 4B)。进行OARSI评分用于量化大鼠软骨损伤的严重程度,结果显示人IPFP-ASCs治疗组OARSI评分显著降低,且低于Sc-ASCs治疗组,对DMM术后大鼠软骨损伤有显著的缓解作用,表明人IPFP-ASCs治疗大鼠OA疗效优于Sc-ASCs。
讨论脂肪干细胞被广泛应用于隆胸、整容、抗衰老、创面修复、心血管疾病及骨关节炎等研究[19-23],目前已证明ASCs可治疗骨关节炎但疗效并不稳定。Toghraie等[24]和Kuroda等[25]发现脂肪干细胞可以改善骨关节炎动物模型的软骨损伤。Lee等[26]证明注射脂肪干细胞的骨关节炎患者美国西安大略和麦克马斯特大学(Western Ontario And Mcmaster University,WOMAC)骨关节炎指数评分和软骨变性得到改善。脂肪干细胞注射剂量和细胞来源影响ASCs的疗效。2016年,Pers等[27]发现不同剂量ASCs对骨关节炎疼痛缓解效果不同,部分患者的软骨磨损得到改善,但其他患者观察到相反的效果。我们实验室前期发现皮下脂肪干细胞治疗骨关节炎疗效优于内脏脂肪干细胞[16],近年来髌下脂肪干细胞成为ASCs的来源,因此本文比较了皮下脂肪干细胞和髌下脂肪干细胞对骨关节炎的疗效。
本研究首先通过胶原酶消化法获得人IPFP-ASCs,形态呈长梭形,体外验证其具有三系分化潜能,可成功诱导成脂肪细胞、骨细胞、软骨细胞。临床研究已证明ASCs可用于治疗OA,但是由于其成分复杂、临床应用不规范、评价标准不统一,导致其疗效不稳定。随着单细胞测序技术的发展,越来越多的研究发现不同来源的ASCs虽然形态相似,但具有异质性[28-29],不同细胞亚群干细胞特性不同[30]。研究报导ASCs中DPP4+细胞亚群增殖能力较强,但成脂潜能较差,ICAM+和CD142+亚群更容易分化成成熟脂肪细胞[31-32]。Nepali等[33]发现眼眶AT-MSCs的CD73、CD90、CD105和CD146的表达高于腹部AT-MSCs,而CD31、CD45和HLA-DR的表达低于腹部AT-MSCs;IPFP-ASCs中的CD34和CD45的表达高于BM-ASCs[34]。因此我们比较人Sc-ASCs和IPFP-ASCs增殖能力,Edu掺入实验证明人IPFP-ASCs体外增殖能力高于Sc-ASCs;流式检测人IPFP-ASCs及Sc-ASCs中CD34及CD31的表达,发现IPFP-ASCs及Sc-ASCs中CD34及CD31表达没有差异。
ASCs治疗OA与其成软骨潜能密切相关,已有研究发现注射脂肪干细胞可观察到软骨新生,但不同ASCs成软骨潜能具有差异。研究发现ASCs CD146+亚群表现出更好的软骨再生潜能,与支架有良好的生物相容性,在大鼠软骨缺损模型中,CD146+亚群与细胞外基质支架联合使用促进软骨的再生效果优于ASCs与细胞外基质支架的联合使用[35]。Jiang等[36]发现脂肪干细胞中CD105+细胞亚群成骨及成软骨能力较强,CD105-细胞亚群成脂能力较强,将CD105+细胞接种于生物支架中,体外软骨培养基中诱导8周,可形成均匀的软骨样组织。因此我们比较了人IPFP-ASCs及Sc-ASCs的体外成软骨潜能及体内大鼠OA治疗效果,阿尔新蓝染色及Western blot证明人IPFP-ASCs体外成软骨潜能优于Sc-ASCs。体内动物实验对各组大鼠膝关节进行形态学大体观察,番红固绿染色及OARSI评分证明人IPFP-ASCs治疗大鼠OA疗效优于Sc-ASCs。
综上所述,本研究发现与人Sc-ASCs相比,人IPFP-ASCs的体外增殖能力、成软骨潜能较强,体内治疗大鼠OA效果更优,为ASCs的择优选择提供了一定的理论基础。
作者贡献声明 宋赛赛 文献调研与整理,数据采集,论文撰写和修订。夏国宏 临床样本数据分析。尹峰 临床样本提供。汤妍 论文构思、设计和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
CHEN D, SHEN J, ZHAO W, et al. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism[J]. Bone Res, 2017, 5: 16044.
[DOI]
|
[2] |
WALLACE IJ, WORTHINGTON S, FELSON DT, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century[J]. Proc Natl Acad Sci U S A, 2017, 114(35): 9332-9336.
[DOI]
|
[3] |
BLANCO FJ. Osteoarthritis and atherosclerosis in joint disease[J]. Reumatol Clín, 2018, 14(5): 251-253.
[DOI]
|
[4] |
HUNTER DJ, BIERMA-ZEINSTRA S. Osteoarthritis[J]. The Lancet, 2019, 393(10182): 1745-1759.
[DOI]
|
[5] |
SHARMA L. Osteoarthritis of the knee[J]. N Engl J Med, 2021, 384(1): 51-59.
[DOI]
|
[6] |
CAO P, LI Y, TANG Y, et al. Pharmacotherapy for knee osteoarthritis: Current and emerging therapies[J]. Exp Opin Pharmac, 2020, 21(7): 797-809.
[DOI]
|
[7] |
GOODMAN SB, WIMMER MA, PLOEG HL. Recent advances in total joint replacement[J]. J Orthop Res, 2020, 38(7): 1413.
[DOI]
|
[8] |
MA JX, HE WW, KUANG MJ, et al. Efficacy of bicompartmental knee arthroplasty (bka) for bicompartmental knee osteoarthritis: A meta analysis[J]. Int J Surg, 2017, 46: 53-60.
[DOI]
|
[9] |
FUGGLE N, CURTIS E, SHAW S, et al. Safety of opioids in osteoarthritis: Outcomes of a systematic review and meta-analysis[J]. Drugs Aging, 2019, 36(Suppl 1): 129-143.
|
[10] |
SACITHARAN PK. Ageing and osteoarthritis[J]. Subcell Biochem, 2019, 91: 123-159.
|
[11] |
ARTHUR A, GRONTHOS S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue[J]. Int J Mol Sci, 2020, 21(24): 9759.
[DOI]
|
[12] |
HWANG JJ, RIM YA, NAM Y, et al. Recent developments in clinical applications of mesenchymal stem cells in the treatment of rheumatoid arthritis and osteoarthritis[J]. Front Immunol, 2021, 12: 631291.
[DOI]
|
[13] |
MAZINI L, ROCHETTE L, AMINE M, et al. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs)[J]. Int J Mol Sci, 2019, 20(10): 2523.
[DOI]
|
[14] |
SI Z, WANG X, SUN C, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies[J]. Biomed Pharmacother, 2019, 114: 108765.
[DOI]
|
[15] |
TRZYNA A, BANAS-ZABCZYK A. Adipose-derived stem cells secretome and its potential application in "stem cell-free therapy"[J]. Biomolecules, 2021, 11(6): 878.
[DOI]
|
[16] |
TANG Y, PAN ZY, ZOU Y, et al. A comparative assessment of adipose-derived stem cells from subcutaneous and visceral fat as a potential cell source for knee osteoarthritis treatment[J]. J Cell Mol Med, 2017, 21(9): 2153-2162.
[DOI]
|
[17] |
ZHONG YC, WANG SC, HAN YH, et al. Recent advance in source, property, differentiation, and applications of infrapatellar fat pad adipose-derived stem cells[J]. Stem Cells Int, 2020, 2020: 2560174.
|
[18] |
GARCIA J, WRIGHT K, ROBERTS S, et al. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus[J]. Sci Rep, 2016, 6: 24295.
[DOI]
|
[19] |
卞琴, 沈自尹, 王拥军. 骨髓间充质干细胞在中医理论中的归属[J]. 中国中医基础医学杂志, 2011, 17(7): 794-797. [CNKI]
|
[20] |
DUNG TN, HAN VD, TIEN GN, et al. Autologous adipose-derived stem cell (Adsc) transplantation in the management of chronic wounds[J]. Ann Burns Fire Disasters, 2021, 34(4): 343-350.
|
[21] |
FANG J, CHEN F, LIU D, et al. Adipose tissue-derived stem cells in breast reconstruction: A brief review on biology and translation[J]. Stem Cell Res Ther, 2021, 12(1): 8.
[DOI]
|
[22] |
HENRY TD, PEPINE CJ, LAMBERT CR, et al. The athena trials: Autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction[J]. Catheter Cardiovasc Interv, 2017, 89(2): 169-77.
[DOI]
|
[23] |
AL-GHADBAN S, BUNNELL BA. Adipose tissue-derived stem cells: Immunomodulatory effects and therapeutic potential[J]. Physiology (Bethesda), 2020, 35(2): 125-133.
|
[24] |
TOGHRAIE FS, CHENARI N, GHOLIPOUR M A, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in rabbit[J]. Knee, 2011, 18(2): 71-75.
[DOI]
|
[25] |
KURODA K, KABATA T, HAYASHI K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression[J]. BMC Musculoskelet Disord, 2015, 16: 236.
[DOI]
|
[26] |
LEE WS, KIM HJ, KIM KI, et al. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: A phase iib, randomized, placebo-controlled clinical trial[J]. Stem Cells Transl Med, 2019, 8(6): 504-511.
[DOI]
|
[27] |
PERS YM, RACKWITZ L, FERREIRA R, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: A phase i dose-escalation trial[J]. Stem Cells Transl Med, 2016, 5(7): 847-56.
[DOI]
|
[28] |
JIMENEZ MT, MICHIELETTO MF, HENAO-MEJIA J. A new perspective on mesenchymal-immune interactions in adipose tissue[J]. Trends Immunol, 2021, 42(5): 375-388.
[DOI]
|
[29] |
FERRERO R, RAINER P, DEPLANCKE B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity[J]. Trends Cell Biol, 2020, 30(12): 937-950.
[DOI]
|
[30] |
ARNHOLD S, ELASHRY MI, KLYMIUK MC, et al. Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ascs) from different fat sources in comparison with lipoma[J]. Stem Cell Res Ther, 2019, 10(1): 309.
[DOI]
|
[31] |
MERRICK D, SAKERS A, IRGEBAY Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue[J]. Science, 2019, 364(6438): eaav2501.
[DOI]
|
[32] |
SCHWALIE PC, DONG H, ZACHARA M, et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots[J]. Nature, 2018, 559(7712): 103-108.
[DOI]
|
[33] |
NEPALI S, PARK M, LEW H, et al. Comparative analysis of human adipose-derived mesenchymal stem cells from orbital and abdominal fat[J]. Stem Cells Int, 2018, 2018: 3932615.
|
[34] |
DING DC, WU KC, CHOU HL, et al. Human infrapatellar fat pad-derived stromal cells have more potent differentiation capacity than other mesenchymal cells and can be enhanced by hyaluronan[J]. Cell Transplant, 2015, 24(7): 1221-1232.
[DOI]
|
[35] |
LI X, GUO W, ZHA K, et al. Enrichment of cd146(+) adipose-derived stem cells in combination with articular cartilage extracellular matrix scaffold promotes cartilage regeneration[J]. Theranostics, 2019, 9(17): 5105-5121.
[DOI]
|
[36] |
JIANG T, LIU W, LV X, et al. Potent in vitro chondrogenesis of cd105 enriched human adipose-derived stem cells[J]. Biomaterials, 2010, 31(13): 3564-3571.
[DOI]
|