文章快速检索     高级检索
   复旦学报(医学版)  2022, Vol. 49 Issue (3): 332-338      DOI: 10.3969/j.issn.1672-8467.2022.03.003
0
Contents            PDF            Abstract             Full text             Fig/Tab
非酒精性脂肪肝病大鼠肠道菌群对肠促胰素效应的影响
王亚涛1 , 程妍1 , 徐静远1 , 史海涛1 , 王凯2 , 鲁晓岚1,2     
1. 西安交通大学第二附属医院消化科 西安 710004;
2. 复旦大学附属浦东医院消化科 上海 201399
摘要目的 探讨非酒精性脂肪肝病(non-alcoholic fatty liver disease,NAFLD)大鼠肠道菌群对L细胞、胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)及其受体(GLP-1R)的影响。方法 将20只SD大鼠分为2组,每组10只,一组给予正常饮食(normal diet,ND),一组给予高脂饮食(high-fat diet,HFD);另将20只SD大鼠给予口服混合肠道非吸收性抗生素2周,建立伪肠道无菌大鼠模型,分为2组,每组10只,一组接受HFD组大鼠肠菌移植,另一组接受ND组大鼠肠菌移植;移植后继续高脂饮食饲养8周,第8周末称体质量并测定血脂、血糖、胰岛素水平,计算胰岛素抵抗指数,评价肝脏组织学,计数L细胞数量,检测餐后1 h门脉血和结肠组织GLP-1、肝脏和胰腺组织GLP-1R的含量,检测粪便双歧杆菌、乳杆菌、大肠埃希菌和肠球菌的数量。结果 和移植ND组肠菌的大鼠相比,移植HFD组肠菌的大鼠表现出更加明显的肝脏脂肪沉积和胰岛素抵抗(P < 0.05),体质量升高(P < 0.01),血脂升高(P < 0.05),结肠L细胞数量降低(P < 0.05),GLP-1合成分泌降低(P < 0.001),肝脏和胰腺GLP-1R含量降低(P < 0.001),粪便双歧杆菌、乳杆菌数量减少(P < 0.05),而大肠埃希菌、肠球菌数量增加(P < 0.05)。结论 在高脂饮食的作用下,NAFLD大鼠肠道菌群可减少结肠L细胞数量,降低大鼠GLP-1分泌和受体数量,进而促进NAFLD的发生发展。
关键词非酒精性脂肪肝病(NAFLD)    肠道菌群    肠促胰素效应    胰高血糖素样肽-1(GLP-1)    
Influence of gut microbiota in non-alcoholic fatty liver disease rat on incretin effect
WANG Ya-tao1 , CHENG Yan1 , XU Jing-yuan1 , SHI Hai-tao1 , WANG Kai2 , LU Xiao-lan1,2     
1. Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China;
2. Department of Gastroenterology, Fudan University Pudong Medical Center, Shanghai 201399, China
Abstract: Objective To explore the influence of gut microbiota in non-alcoholic fatty liver (NAFLD) rat on L cells, glucagon-like peptide-1 (GLP-1) and its receptors (GLP-1R). Methods A total of 20 SD rats were randomly divided into 2 groups (n=10 for each group), one group was fed with normal diet (ND), the other was fed with high-fat diet (HFD).Another 20 SD rats orally administered non-absorbed antibiotics for 2 weeks to establish a pseudo germ-free rat model, and then were divided into 2 groups (n=10), one group was colonised with the gut microbiota from HFD group, the other were colonised from ND group, and both of them were then fed with high-fat diet for an additional 8 weeks after colonisation. At the end of 8th week, the body weight was measured, the serum level of blood lipids, fasting blood glucose and insulin were assayed, the insulin resistance index (HOMA-IR) was calculated, the liver histology was evaluated, the number of colonic L cells were counted, the levels of GLP-1 in 1-hour postprandial of portal blood and colonic homogenates were determined, and the levels of GLP-1R in hepatic and pancreatic homogenates were also determined.Moreover, the amount of Bifidobacterium, Lactobacillus, Escherichia coli and Enterococcus in the faecal microbiota were detected. Results Compared with rats colonised with gut microbiota from ND group, rats colonised from HFD group showed more serious hepatic fat deposition and insulin resistance (P < 0.05). They had increased body weight (P < 0.01) and increased blood lipids (P < 0.05).They had decreased number of colonic L cells (P < 0.05), decreased synthesis and secretion level of GLP-1 (P < 0.001), and decreased expression of GLP-1R in liver and pancrease (P < 0.001). They had a decrease in Bifidobacterium and Lactobacillus (P < 0.05), and an increase in Escherichia coli and Enterococcus in the feces (P < 0.05). Conclusion Under HFD the gut microbiota of NAFLD can reduce the number of colonic L cells in rats.
Key words: nonalcoholic fatty liver disease (NAFLD)    gut microbiota    incretin effect    glucagon-like peptide-1 (GLP-1)    

随着现代生活水平的提高,非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)的发病率不断上升[1-2],有成为我国第一大肝病的趋势[3-4],其危害不容忽视。NAFLD的发病机制复杂,研究发现接受NAFLD肠道菌群移植的小鼠出现肝脏脂肪含量增加及胰岛素抵抗[5],提示肠道菌群在NAFLD的发生发展中具有重要作用。

胰高血糖素样肽-1(glucagon-likepeptide1,GLP-1)是L细胞分泌的一种十分重要的肠促胰岛素,其受体分布广泛,具有改善糖脂代谢紊乱等作用[6]。NAFLD患者存在血清GLP-1水平下降[7],但尚不清楚是否因为L细胞合成分泌减少还是酶降解增加所造成。分泌GLP-1的L细胞主要存在于结肠[8],而结肠的细菌数量最多。研究发现,肠道菌群与肠促胰素存在密切关系,双歧杆菌可影响小鼠L细胞数量和GLP-1分泌[9],降低小鼠肠促胰素效应,但NAFLD肠道菌群改变能否直接影响肠促胰素效应尚不明确。本实验通过粪菌移植方式探讨NAFLD大鼠肠道菌群对结肠L细胞和GLP-1/GLP-1R的影响,从肠促胰素效应角度研究NAFLD肠道菌群在NAFLD发生发展中的作用。

材料和方法

主要试剂  40只6周龄SPF级雄性SD大鼠,购自西安交通大学动物实验中心;StoolGen DNA kit试剂盒购自康为世纪生物科技有限公司;SYBR Premix Ex Taq II(Tli RNaseH Plus)购自TAKARA宝生物工程有限公司;大鼠GLP-1和GLP-1R酶联免疫测定(enzyme linked immunosorbent assay,ELISA)试剂盒购自南京森贝伽有限公司;PCR引物由北京奥科鼎盛生物科技有限公司合成;双歧杆菌、大肠埃希菌、肠球菌标准菌购自中国普通微生物菌种保藏管理中心,乳杆菌购自广东省微生物菌种保藏中心。

动物造模及饲养  本研究经西安交通大学动物伦理委员会批准,实验起讫时间为2019年5月—2020年5月。20只大鼠随机分为2组,每组10只,一组喂以高脂饲料(high-fat diet,HFD组),一组喂以普通饲料(normal diet,ND组),饲养16周。另取20只大鼠,喂以混合口服非吸收性抗生素饮用水(庆大霉素100 μg/mL、磺卞青霉素2 500 μg/mL、头孢硫脒2 500 μg/mL、两性霉素B 30 µg/mL)2周,建立伪肠道无菌大鼠模型,需氧和厌氧培养瓶粪便培养3天和7天验证模型是否成功,并随机分为两组,每组10只。从第15周末开始每天分别收集HFD组和ND组大鼠粪便,0.9%生理盐水(1 g∶5 mL)稀释过滤制备成粪菌液,并在30 min内采用灌胃法分别移植到伪肠道无菌大鼠体内(2 mL/只),1天/次,持续1周,形成移植HFD肠菌组(Trans HFD组)和移植ND肠菌组(Trans ND组)。移植前3天停用抗生素,移植前1天腹腔注射奥美拉唑(9 mg/kg)。移植后继续高脂饲料喂养8周后,将大鼠隔夜禁食,10%水合氯醛(4 mL/kg)腹腔麻醉,收集空腹血标本,然后50%葡萄糖溶液灌胃(5 mL/只),收集餐后1 h门脉血、粪便、肝脏、结肠和胰腺组织标本。大鼠饲养于西安交通大学动物实验中心(SPF级),12 h/12 h光暗循环,温度22 ℃~23 ℃,湿度40%~60%,自由饮水进食。自制高脂饲料:普通饲料50%,猪油10%,蔗糖7.5%,奶粉5%,蛋黄粉2.5%,豆粉15%,高温高压消毒。普通饲料由西安交通大学动物实验中心统一提供。

肝指数测定  测量大鼠体质量和肝湿重,计算肝指数=肝质量(g)/体质量(g)×100%。

血生化指标测定  空腹血3 000 r/min、4 ℃离心15 min(离心半径8.6 cm)后分离血清,日本岛津全自动生化分析仪检测空腹血糖(fasting plasma glucose,FPG)、甘油三酯(triglyceride,TG)、胆固醇(total cholesterol,TC)水平,免疫放射法测空腹胰岛素(fasting insulin,FINS)水平,计算胰岛素抵抗指数(homeostasis model assessment of insulin resistance,HOMA-IR):FPG(mmol/L)×FIN(mIU/L)/22.5。

GLP-1/GLP-1R测定  ELISA检测餐后1 h门脉血和结肠组织匀浆GLP-1水平、肝脏和胰腺组织匀浆GLP-1R水平。按照ELISA试剂盒说明说进行操作。

肝脏组织病理学观察  取相同部位拇指大小肝组织。HE染色:10%甲醛液固定,常规脱水,石蜡包埋,切片,HE染色。油红染色:OCT包埋后冰冻切片,10%中性甲醛固定,油红O染色,60%异丙醇分色,苏木精复染,明胶封片。光镜下观察肝脏脂变程度,并从脂变范围、有无炎症病灶、有无气球样变及有无纤维化4个方面对其进行肝脏活动性(NAFLD activity score,NAS)评分。病理组织评分由一位对实验不知情的病理学医师进行评估。

结肠L细胞观察  免疫组化计数L细胞。距回盲瓣1 cm处结肠取1 cm,10%甲醛液固定、包埋、切片、脱蜡、水化、消除内源性过氧化物酶的活性、封闭后,加入兔抗GLP-1多克隆抗体,4 ℃孵育过夜,再依次滴加生物素化抗兔IgG抗体、ABC液,最后二氨基联苯氨显色,苏木精复染,梯度乙醇脱水、二甲苯透明、中性树胶封片。光镜下40倍镜随机选取10个不重叠视野计数平均每个视野L细胞数量。

肠道细菌测定  双歧杆菌(Bifidobacterium longum CGMCC1.2186),MRS培养基+0.05%半胱氨酸盐酸盐,37 ℃厌氧培养,引物序列F:5’-GGGTGGTAATGCCGGATG-3’、R:5’-TAAGCGATGGACTTTCACACC-3’;乳杆菌(Lactobacillus salivarius GDMCC1.986),MRS培养基,37 ℃厌氧培养,引物序列F:5’-AGCAGTAGGGAATCTTCCA-3’、R:5’-CACCGCTACACATGGAG-3’;大肠埃希菌(Escherichia coli CGMCC1.90),LB培养基,37 ℃摇床培养,引物序列F:5’-GTTAATACCTTTGCTCATTGA-3’、R:5’-ACCAGGGTATCTAATCCTGTT-3’;肠球菌(Enterococcus faecalis CGMCC1.125),M17培养基+1%葡萄糖,37 ℃培养,引物序列F:5’-CCCTTATTGTTAGTTGCCATCATT-3’、R:5’-ACTCGTTGTACTTCCCATTGT-3’。收集培养的标准菌,使用DNA提取试剂盒提取DNA,紫外分光光度计测定吸光度值(D260)并计算DNA浓度,并根据每种肠菌基因组大小计算模板数。将标准菌DNA以无菌TE稀释10倍,制成标准品并进行荧光定量PCR反应,制作以Ct值为纵坐标、以不同稀释模板数的对数为横坐标的标准曲线。粪便基因组提取试剂盒提取大鼠粪便DNA,实时荧光定量PCR法测定粪便中双歧杆菌、乳杆菌、大肠埃希菌、肠球菌的Ct值并根据标准曲线计算粪便中各肠菌拷贝数的对数。Takara荧光定量检测仪检验,Bio-rad IQ5System分析软件分析数据。

统计学方法  采用SPSS 23.0处理,计量资料采用x±s表示。方差齐时,样本均数比较采用独立样本t检验;若方差不齐时,样本均数比较采用t’检验。采用GraphPad Prism 6.0软件制作柱状图,P < 0.05为差异有统计学意义。

结果

高脂饮食促进NAFLD大鼠模型形成,肠道菌群发生改变  不同饲料饲养16周后,HFD组大鼠体质量明显高于ND组(P=0.008),肝指数更高(P < 0.001),TG、TC、FPG、FINS水平及HOMA-IR也明显更高(P=0.002;P=0.002;P=0.004;P < 0.001;P=0.002),出现糖脂代谢紊乱(表 1)。在光镜下,HFD组大鼠肝脏可见明显脂肪变性,肝细胞的体积增大,充满大小不一的脂肪空泡,而ND组大鼠肝小叶结构完整,细胞大小形态菌正常,未见脂肪空泡,无炎症浸润(图 1A)。提示NAFLD造模成功。

A: Histopathology of the liver (400×); B: Variations of gut microbiota. (1)P < 0.001. 图 1 HFD组和ND组大鼠肝脏病理及肠菌变化 Fig 1 Histopathology of liver and variations of gut microbiota of rats in HFD group and ND group
表 1 HFD组和ND组大鼠代谢指标 Tab 1 Metabolic indexes of rats in HFD group and ND group  
(x±s)
Group Body weight(g) Liver index×100 TC(mmol/L) TG(mmol/L) FPG(mmol/L) FINS(mIU/L) HOMA-IR
HFD 633.79±27.38 3.60±0.32 2.59±0.67 1.65±0.75 7.28±1.29 15.11±3.31 5.04±1.88
ND 582.00±24.05 3.25±0.21 1.56±0.60 0.63±0.40 5.58±0.96 10.02±1.82 2.55±0.89
t or t 4.494 2.848 3.594 3.751 3.341 4.265 3.796
P < 0.001 0.011 0.002 0.002 0.004 < 0.001 0.002
TC:Total cholesterol;TG:Triglyceride;FPG:Fasting plasma glucose;FINS:Fasting insulin;HOMA-IR:Homeostasis model assessment of insulin resistance.

利用标准菌构建标准曲线,根据粪便中4种肠菌的Ct值,计算出每克粪便中该肠菌拷贝数的对数。结果显示,和ND组相比,HFD组大鼠粪便双歧杆菌、乳杆菌含量减少(6.57±0.31 vs.7.12±0.23,t=-4.575,P < 0.001;7.07±0.32 vs.7.75±0.38,t=-4.302,P < 0.001),肠球菌、大肠埃希菌含量增加(7.28±0.36 vs.6.50±0.47,t=4.109,P < 0.001;7.77±0.33 vs.7.15±0.38,t=3.932,P < 0.001),肠道菌群发生了改变(图 1B)。

移植HFD组肠道菌群的大鼠脂肪肝更严重,肠促胰素效应减低

体质量、肝指数、血生化指标  和Trans ND组相比,Trans HFD组大鼠体质量增加更多(P=0.006),肝指数更高(P=0.048),TG、TC、FPG、FINS水平及HOMA-IR都更高(P=0.046,P=0.002,P=0.048,P=0.007,P=0.011),表现出更为明显的糖脂代谢紊乱(表 2)。

表 2 Trans HFD组和Trans ND组大鼠代谢相关指标 Tab 2 Metabolic indexes of rats in Trans HFD group and Trans ND group  
(x±s)
Group Body weight(g) Liver index×100 TC(mmol/L) TG(mmol/L) FPG(mmol/L) FINS(mIU/L) HOMA-IR
Trans HFD 558.61±54.61 3.54±0.13 2.21±0.38 1.28±0.21 6.94±0.52 13.68±1.90 4.25±0.90
Trans ND 491.42±41.10 3.41±0.14 1.86±0.35 0.96±0.18 6.48±0.46 11.54±0.92 3.34±0.50
t or t 3.109 2.120 2.146 3.558 2.117 3.197 2.827
P 0.006 0.048 0.046 0.002 0.048 0.007 0.011
TC:Total cholesterol;TG:Triglyceride;FPG:Fasting plasma glucose;FINS:Fasting insulin;HOMA-IR:Homeostasis model assessment of insulin resistance.

肝脏组织病理学  光镜下,Trans HFD组大鼠肝细胞体积增大,排列明显紊乱,可见明显脂肪变性,充满大小不一的脂肪空泡,炎症细胞浸润明显;Trans ND组肝细胞排列稍紊乱,可见少量大小不一的脂肪空泡及炎症细胞浸润(图 2)。NAS评分显示Trans HFD组大鼠为3.8±1.68,比Trans ND组的2.5±0.97得分更高(t=2.112,P=0.049)。

图 2 Trans HFD组和Trans ND组大鼠肝脏HE染色(400倍镜)和油红染色(200倍镜) Fig 2 Histopathology in liver of rats by H & E staining (400×) and oil red O staining (200×)in Trans HFD group and Trans ND group

肠促胰素效应  在40倍镜下平均每视野里Trans HFD组大鼠结肠L细胞数量较Trans ND组明显减少(P=0.037)(图 3)。和Trans ND组相比,Trans HFD组大鼠门脉血和结肠GLP-1含量更低(P < 0.001,P < 0.001),提示Trans HFD组大鼠GLP-1合成和分泌都减少;同时Trans HFD组大鼠肝脏和胰腺GLP-1R含量也较Trans ND组更低(P < 0.001;P < 0.001),提示Trans HFD组大鼠GLP-1作用于靶器官的能力更低(表 3)。

图 3 Trans HFD组和Trans ND组大鼠结肠L细胞(200倍镜) Fig 3 Colonic L cells of rats in Trans HFD group and Trans ND group (200×)
表 3 Trans HFD组和Trans ND组大鼠肠促胰素效应相关指标 Tab 3 The related indexes of incretin effect of rats in Trans HFD group and Trans ND group  
(x±s)
Group Colonic L cells
(per 40× microscope
GLP-1 in portal blood
(pmol/L)
GLP-1 in colonic homogenate
(pmol/L)
GLP-1R in hepatic homogenate
(mg/L)
GLP-1R in pancreatic homogenate
(mg/L)
Trans HFD 39.08±7.56 4.63±0.63 60.65±12.99 7.36±0.38 8.21±0.60
Trans ND 48.16±10.30 5.72±0.52 89.36±16.28 8.00±0.30 9.24±0.49
t or t -2.247 -4.192 -4.360 -4.145 -4.192
P 0.037 0.001 < 0.001 < 0.001 0.001
GLP-1/GLP-1R:Glucagon-like peptide 1 and its’ receptor.

肠道菌群差异  根据标准曲线和粪便中4种肠菌的Ct值,计算出每克粪便中该菌拷贝数的对数。结果显示,和Trans ND组相比,Trans HFD组大鼠粪便双歧杆菌、乳杆菌含量更低(6.33±0.25 vs. 6.69±0.30,t=-2.852,P=0.011;6.90±0.17 vs. 7.39±0.38,t=-3.742,P=0.001),肠球菌、大肠埃希菌含量则更高(7.46±0.10 vs. 7.04±0.36,t=3.473,P=0.006;7.96±0.20 vs. 7.58±0.37,t=2.858,P=0.013)(图 4),且与HFD组和ND组大鼠的差异保持一致。

(1)P < 0.05, (2)P < 0.01. 图 4 Trans HFD组和Trans ND组大鼠粪便肠菌变化 Fig 4 Variations of gut microbiota of rats in the Trans HFD group and the Trans ND group
讨论

NAFLD发病机制复杂,越来越多的证据支持肠道菌群在NAFLD发生发展中的关键作用,而肠促胰素效应的减低可能是肠道菌群影响NAFLD重要机制之一。我们的实验观察到,高脂饮食可以诱导NAFLD和肠菌改变,分别移植高脂饮食大鼠和正常饮食大鼠的肠菌给两组普通大鼠后,继续给予高脂饮食干预,移植高脂饮食肠菌的大鼠更容易产生肥胖、糖脂代谢紊乱和肝脏脂肪沉积,说明这种代谢的改变可以通过肠道菌群传递,高脂饮食诱导的肠菌改变促进NAFLD的发生发展。实验还发现高脂饮食诱导的肠菌改变不仅降低了GLP-1的合成分泌水平,同时还降低了其作用于靶器官的能力,且GLP-1合成分泌的减少是由L细胞数量减少引起的。分泌GLP-1的L细胞位于结肠,与大量肠菌共存,深受肠道菌群的影响。在本实验中,高脂饮食诱导大鼠粪便双歧杆菌和乳杆菌降低,大肠埃希菌和肠球菌增加,且在移植后这种肠菌差异依然存在,提示这些肠菌的改变可能是影响肠促胰素效应和NAFLD的重要因素。

双歧杆菌可以通过影响胆汁酸循环及抑制肝脏脂肪合成酶的活性降低血脂,将碳水化合物酵解成短链脂肪酸,促进L细胞生成及GLP-1分泌等[9]。乳杆菌可产乳酸盐,增加粪便丁酸含量,并增加肠上皮细胞对丁酸的摄取,促进GLP-1分泌[10],同时还能促进双歧杆菌生长。已有实验证实,给小鼠喂食乳杆菌能够降低高脂饮食诱导的肝脏脂肪沉积[11-12]。大肠埃希菌过度生长可促进炎症反应,诱导胰岛素抵抗和NAFLD形成[13-14]。肠球菌和NAFLD的关系说法不一,有研究发现和高脂饮食的普通小鼠相比,胃酸缺乏小鼠表现出更为严重的肝脏脂肪变性和粪便肠球菌过度生长[15],提示肠球菌可能参与促进NAFLD形成,这与本实验的结论一致,尽管在另一些研究中NAFLD和肠球菌并不存在显著关联[16]

我们的实验证实了高脂饮食可以诱导肠道菌群发生改变,进而通过减少L细胞数量,降低GLP-1合成分泌水平和作用于靶器官的能力,导致肠促胰素效应减低,从而促进胰岛素抵抗和NAFLD的发生发展。研究明确了肠道菌群在NAFLD发病中的作用和部分机制,为从肠道菌群角度治疗NAFLD提供了一定依据。外源性的益生菌摄入能够修复失调的肠道微生态[17-18],摄入一定量的双歧杆菌和乳杆菌或许能够改善肠促胰素效应和胰岛素抵抗,从而对NAFLD的治疗有一定的帮助作用。

本研究仍有不足之处:(1)考虑到饮食因素对NAFLD影响较大,高脂饮食诱导的NAFLD可在停止高脂饮食后明显缓解[19],我们并未在粪菌移植后设立普通饮食对照组,粪菌移植的实验结论是在继续高脂饮食条件下得到的。(2)本实验和临床期待的干预肠菌后改善NAFLD的目标相反,主要从促进NAFLD发病的肠道菌群角度开展,希望通过对发病机制的研究为NAFLD治疗提供更多思路。

今后我们将进一步在属水平研究关键菌对NAFLD的治疗作用,以找到更多的关键菌。

作者贡献声明  王亚涛  实验设计和研究,论文撰写。程妍  实验设计,结果分析。徐静远,史海涛,王凯  实验资料分析。鲁晓岚  实验指导,论文修改。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
YOUNOSSI ZM, STEPANOVA M, YOUNOSSI Y, et al. Epidemiology of chronic liver diseases in the USA in the past three decades[J]. Gut, 2020, 69(3): 564-568. [DOI]
[2]
CHOLONGITAS E, PAVLOPOULOU I, PAPATHEODORIDI M, et al. Epidemiology of nonalcoholic fatty liver disease in Europe: a systematic review and meta-analysis[J]. Ann Gastroenterol, 2021, 34(3): 404-414.
[3]
WONG WS, CHU WCW, WONG GLH, et al. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance spectroscopy and transient elastography[J]. Gut, 2012, 61(3): 409-415. [DOI]
[4]
LU ZY, SHAO Z, LI YL, et al. Prevalence of and risk factors for non-alcoholic fatty liver disease in a Chinese population: An 8-year follow-up study[J]. World J Gastroenterol, 2016, 22(13): 3663-3669. [DOI]
[5]
SODERBORG TK, CLARK SE, MULLIGAN CE, et al. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD[J]. Nat Commun, 2018, 9(1): 4462. [DOI]
[6]
GASBJERG LS, HELSTED MM, HARTMANN B, et al. Separate and combined glucometabolic effects of endogenous glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 in healthy individuals[J]. Diabetes, 2019, 68(5): 906-917. [DOI]
[7]
BERNSMEIER C, MEYER-GERSPACH AC, BLASER LS, et al. Glucose-induced glucagon-like Peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease[J]. PLoS One, 2014, 9(1): e87488. [DOI]
[8]
EISSELE R, GÖKE R, WILLEMER S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man[J]. Eur J Clin Invest, 1992, 22(4): 283-291. [DOI]
[9]
LI T, YANG J, ZHANG H, et al. Bifidobacterium from breastfed infant faeces prevent high-fat-diet-induced glucose tolerance impairment, mediated by the modulation of glucose intake and the incretin hormone secretion axis[J]. J Sci Food Agric, 2020, 100(8): 3308-3318. [DOI]
[10]
KUMAR A, ALREFAI WA, BORTHAKUR A, et al. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 309(7): G602-G607. [DOI]
[11]
ZHAO Z, CHEN L, ZHAO Y, et al. Lactobacillus plantarum NA136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation[J]. Appl Microbiol Biotechnol, 2020, 104(12): 5273-5282. [DOI]
[12]
PARK EJ, LEE YS, KIM SM, et al. Beneficial effects of lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats[J]. Nutrients, 2020, 12(2): 542. [DOI]
[13]
FEI N, ZHAO L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice[J]. ISME J, 2013, 7(4): 880-884. [DOI]
[14]
FEI N, BRUNEAU A, ZHANG X, et al. Endotoxin producers overgrowing in human gut microbiota as the causative agents for nonalcoholic fatty liver disease[J]. mBio, 2020, 11(1): e03263-19.
[15]
LLORENTE C, JEPSEN P, INAMINE T, et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal enterococcus[J]. Nat Commun, 2017, 8(1): 21-37. [DOI]
[16]
LANG S, DEMIR M, DUAN Y, et al. Cytolysin-positive enterococcus faecalis is not increased in patients with nonalcoholic steatohepatitis[J]. Liver Int, 2020, 40(4): 860-865. [DOI]
[17]
JENA PK, SHENG L, LI Y, et al. Probiotics VSL#3 are effective in reversing non-alcoholic steatohepatitis in a mouse model[J]. Hepatobiliary Surg Nutr, 2020, 9(2): 170-182. [DOI]
[18]
SCORLETTI E, AFOLABI PR, MILES EA, et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2020, 158(6): 1597-1610. [DOI]
[19]
冯文焕, 袁雪雯, 高彩霞, 等. 非酒精性脂肪性肝病大鼠高脂饮食后改为普通饮食的实验观察[J]. 中国糖尿病杂志, 2016, 24(7): 645-648. [DOI]

文章信息

王亚涛, 程妍, 徐静远, 史海涛, 王凯, 鲁晓岚
WANG Ya-tao, CHENG Yan, XU Jing-yuan, SHI Hai-tao, WANG Kai, LU Xiao-lan
非酒精性脂肪肝病大鼠肠道菌群对肠促胰素效应的影响
Influence of gut microbiota in non-alcoholic fatty liver disease rat on incretin effect
复旦学报医学版, 2022, 49(3): 332-338.
Fudan University Journal of Medical Sciences, 2022, 49(3): 332-338.
Corresponding author
LU Xiao-lan, E-mail: xiaolan_lu@163.com.
基金项目
上海市自然科学基金(20ZR1450100);上海市浦东医院人才项目(YJRCJJ201801)
Foundation item
This work was supported by the Natural Science Foundation of Shanghai (20ZR1450100) and Talent Project of Shanghai Pudong Hospital (YJRCJJ201801)

工作空间