2. 上海交通大学医学院附属精神卫生中心普通精神科 上海 200030
2. Department of Psychiatry, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
精神分裂症(schizophrenia,SCH)是一种严重的精神障碍,临床主要表现为阳性症状(幻觉和妄想)、阴性症状(社交退缩、情感淡漠、情感迟钝、言语贫乏、快感缺失)、认知功能缺损、情感症状(焦虑、抑郁等)、敌对攻击等行为。SCH的发病机制与各种神经递质系统的失调有关,包括多巴胺(dopamine,DA)、5-羟色胺(5-hydroxytryptamine,5-HT)、γ-氨基丁酸(γ-aminobutyric acid,GABA)和谷氨酸(glutamic acid,Glu)[1],同时多巴胺功能亢进[2]及谷氨酸N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体功能低下[3]被认为是SCH的主要发病原因。中脑边缘系统DA释放增加导致D2受体过度激活引起阳性症状,中脑皮层系统DA释放减少导致D1受体过度抑制引起阴性症状及认知功能的损害,而DA功能异常被认为是继发于前额叶皮层Glu功能低下[4-5]。目前用于SCH的药物治疗侧重于拮抗多巴胺受体,主要是D2受体,不仅会出现与D2受体拮抗剂相关的不良反应,如锥体外系症状和代谢紊乱(即体重增加)[6],还会导致阴性症状及认知功能损害,而目前缺乏有效针对阴性症状和认知功能的药物[7]。
大脑组胺能系统的作用已经基本明确,其中组胺H3受体(histamine H3 receptor,H3R)主要在中枢神经系统中表达,能够影响多种神经递质,是一个重要的药理靶点。目前已经开发出针对H3R的多种配体[8-9]。这些配体参与多种疾病的病理生理学,例如睡眠障碍、阿尔茨海默病、精神分裂症、注意缺陷多动障碍、代谢综合征(肥胖)、鼻腔炎症性疾病(过敏性鼻炎)和疼痛。国外有关H3R与SCH的临床前研究与临床研究结果不一,而国内罕有相关研究和综述,精神科医师对于组胺H受体更多的关注在抗精神病药物引起的不良反应,而忽略了其调节中枢神经递质和多脑区的神经元活动。因此,本文对组胺能H3R在SCH阴性症状和认知功能中的研究进展作一综述,期望带给国内相关领域研究人员和临床医师更多思考。
组胺和H3R 组胺指存在于组织中的胺,由组胺酸脱羧酶合成,其首先在神经系统外被发现。组胺在胃酸分泌、过敏原和炎症的免疫反应等过程中发挥重要生理作用。20世纪70年代发现在哺乳动物大脑中存在一个明确的组胺能神经系统[10]。因此组胺不仅是一种炎症介质和生物活性物质,更是中枢神经系统中一种重要的神经递质。
组胺在中枢神经系统中的生物合成和释放是由组胺H3R通过环磷酸腺苷(cyclic adenosine monophosphate,cAMP)/蛋白激酶A(protein kinase A,PKA)依赖性途径调节的[11]。1983年Arrang等[12]通过分析大鼠大脑皮层去极化切片对组胺释放的抑制作用时发现了H3R。1987年,R-α-甲基组胺和硫哌酰胺分别作为选择性H3受体激动剂和拮抗剂证实了该受体的存在[13]。1999年Lovenberg等[14]克隆了人类H3R基因,该基因编码445个氨基酸蛋白。H3R分为突触前自身受体(短亚型的H3R)和异身受体(长亚型的H3R)[15]。突触前自身受体主要分布于乳头结节核神经元的胞体、树突和轴突上,能抑制突触囊泡内神经递质的合成和释放。异身受体主要存在于基底节、苍白球、海马和皮质[16],能调控与睡眠-觉醒有关的各种生物胺、乙酰胆碱(acetylcholine,ACH)、GABA、DA、5-HT、去甲肾上腺素(norepinephrine,NE)和Glu的释放[17-19]。与其他神经递质不同,组胺的再摄取机制尚不清楚[18]。在大脑中,组胺的合成局限于结节乳头状核,从下丘脑结节乳头核发出的组胺能纤维投射到大脑的很多区域[20],包括大脑皮层、海马、纹状体、丘脑、蓝斑核以及脊髓。脑组织胺不仅调节多种稳态功能,如体温调节、液体平衡、能量代谢和应激;而且参与许多过程,如昼夜节律、睡眠-觉醒周期、神经内分泌调节、水和食物摄入、运动、性行为、注意力、记忆和学习,以及神经元的高兴奋性[18-19]。
H3R不但调控组胺神经元,也影响脑内其他神经递质和神经肽的活动,从而调节多脑区的神经元活动,提示大脑的组胺能神经元系统可能与其他脑部疾病的精神病性症状、情感和认知障碍的病理生理密切相关。因此,H3R可以作为包括精神分裂症在内的各种中枢神经系统疾病的新型药物治疗靶标。
SCH与H3R拮抗剂 SCH发病机制复杂。经典抗精神病药在治疗阳性症状和防止精神病复发方面效果良好,但不良反应明显,如锥体外系症状和迟发性运动障碍;第二代非经典抗精神病药,极大减少了药物不良反应,但在改善阴性症状及认知障碍方面仍效果甚微。因此,迫切需要一种全新的药物,不仅对SCH所有症状均有效,并且安全性高。H3R可调节对认知功能至关重要的多种神经递质(包括组胺、DA和ACH等)的合成和释放[21]。组胺能神经元支配前额叶皮层(prefrontal cortex,PFC)和海马参与学习和记忆过程,H3R拮抗剂可以增强动物的多个认知域[22]。临床研究发现,SCH患者的脑脊液中N-甲基组增强[23-24],并在SCH患者的大脑中观察到H3R的异常表达[23]。Jin等[25]研究也发现,H3R在SCH患者PFC的特异性结合增加。此外,H3R拮抗剂可以诱导Glu释放,而SCH患者Glu活性低下[26],H3R拮抗剂可促使Glu释放增加,间接调节大脑PFC的DA水平。因此,H3R拮抗剂将成为一种新作用机制的药物。
H3R及其拮抗剂与SCH阴性症状 有高达52.2%的SCH患者伴有阴性症状[27]。大脑前额叶皮质DA功能不足是阴性症状的主要原因。阴性症状包括情感迟钝、言语贫乏、社会退缩、意志减退、快感缺失,其加重了SCH患者社会功能和生活质量的损害,急需更好的治疗手段。临床前研究中,给予H3R拮抗剂可以增加老鼠前额叶皮质细胞外DA浓度,但不增加纹状体处DA浓度,可间接改善阴性症状。研究发现拮抗H3R会导致组胺水平增加,增强突触后H1受体的激活,增强觉醒[28-30],证明H3R拮抗剂具有促醒特性[31],另外,组胺在光/暗循环中起重要作用,组胺水平在清醒期间增加,在睡眠期间下降到基线水平[32-33]。因此,H3R阻断后导致组胺神经传递增强,进而提高日间嗜睡症患者的觉醒和警惕性[28]。最近发现DA的5个受体亚型均在组胺神经元上有明显表达,而且组胺神经元能摄取左旋多巴并用本身的多巴脱羧酶将其脱羧为DA,继而能通过组胺投射到纹状体的通路将DA释放于纹状体运动调控系统[33]。有关H3R对阴性症状调节作用的研究较少,有研究发表了两种H3R拮抗剂的结果:ABT-288[34]和GSK239512[35]这两种化合物在抗精神病药物的辅助作用下对阴性症状没有明显的效果。目前来看,在为数不多的研究中,H3R及拮抗剂对SCH阴性症状的作用在临床前研究中存有优势,需要进一步开展临床研究。
H3R及其拮抗剂与SCH的认知功能 认知缺陷是SCH的核心症状之一,也是原发性损害。认知功能受损越重,SCH患者的预后越差。据报道,约有80%的SCH患者由于认知功能受损无法正常工作[36]。有研究显示,与SCH认知功能损害相关的神经递质除DA外,还有组胺能、5-羟色胺能、去甲肾上腺素能、乙酰胆碱能、谷氨酸能和γ-氨基丁酸能神经元的参与[37]。对SCH患者尸脑分析后发现,与对照组相比,经过药物治疗的患者大脑PFC的海马CA2区显示出不同的H3R结合,表明H3R在认知调节中起作用。H3R拮抗剂对SCH认知缺陷有治疗效果[1, 38],可能由于H3R拮抗剂具有促醒特性,其唤醒效应与大脑皮质节律快速结合,这些节律与更高的脑功能相关,如警觉性、注意力和认知[29, 32];也可能与H3R拮抗剂能增加其他参与认知的神经递质的释放有关,如前额叶皮质中的ACH、前扣带回皮质和海马[39-40]、前额叶皮质和前扣带回皮质中的DA[40-41]及前扣带回皮质中的鸟嘌呤[40],但是H3R拮抗剂影响这些神经递质释放的机制比较复杂。此外,也有研究提示H3R拮抗剂与参与认知过程的诸多神经通路有关,包括环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)/脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)途径,磷脂酰肌醇-3-羟激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)/蛋白激酶B(protein kinase B,PKB)/叉头状转录因子O1(forkhead transcription factor,FoxO1)途径的小胶质细胞活化等,但其具体机制需进一步研究与验证[42-43]。
临床前研究 一些临床前研究表明组胺神经传递在认知过程中起作用。非咪唑类H3R拮抗剂BF2.649(Pitolisant、Triprolisant)能增加大鼠前额叶皮质和海马微透析液中的ACH和前额叶皮质中的DA[44],而由伏隔核组成的纹状体复合体中DA浓度没有增加。因此,Pitolisant可用于觉醒、记忆缺陷和其他认知障碍[45]。DL-77是一种结构上与Pitolisant密切相关的化合物,它通过在不同记忆阶段的作用来提高认知,证明了H3R对治疗改善神经精神障碍相关认知症状可能有意义[46]。JNJ-5207852能不同程度改善由戊四唑(pentylenetetrazole,PTZ)诱发的断奶小鼠记忆障碍[47];ABT-238和ABT-288能提高注意缺陷大鼠和小鼠的认知和空间记忆[41, 48];GSK-189254和GSK-239512在许多动物实验中能够改善注意力和记忆模型[49-50];PF-03654746在阿尔兹海默病识别模型中是有效的[21, 45, 51]。CEP-26401(Irdabisant)可以提高老鼠的社交能力短期记忆识别模型[52],同时提示Irdabisant在啮齿动物模型中具有较强的行为效应;SAR-110894逆转了啮齿动物Y-迷宫试验中工作记忆的缺失[9],SAR-110894在与精神分裂症相关的不同认知障碍动物模型中的有效性也得到了证明[53];ABT-239和A-431404可减少氯胺酮与MK-801引起的大鼠认知功能障碍,比标准抗精神病药物(如奥氮平或利培酮)有更好的效果[54]。S38093被发现能够诱导对海马BDNF中BDNF-Ⅸ、BDNF-Ⅳ和BDNF-Ⅰ转录本年龄依赖性效应的逆转,且慢性S38093治疗能够显著改善老年小鼠在情境辨别测试中的表现[55],与此相类似,S47445同样在动物实验中被证明具有记忆增强作用[56]。Thioperamide与Betahistine则被发现能够减轻记忆力减退,促进小鼠遗忘记忆的短暂恢复[57-58]。值得注意的是,低剂量Enerisant(0.03~0.3 mg/kg,p.o.)的使用在小鼠中能够改善由东莨菪碱导致的认知缺损,但高剂量(3~10 mg/kg,p.o.)则导致促觉醒作用,提示H3R拮抗剂的剂量与作用之间可能存在一定关联[59]。
临床研究 在一系列的临床研究中,Pitolisant有较好的疗效,在一项改善SCH相关的认知障碍的Ⅱ期临床研究(ClinicalTrials.gov试验注册号:NCT00690274)中,当pitolisant的剂量为20 mg/d,H3R拮抗剂显示出对记忆障碍相关症状具有治疗价值,并显示了该疾病患者的前认知效应。一项关于ABT-288治疗与SCH相关的认知障碍有效性的研究表明,SCH症状在整个研究过程中保持稳定,然而,与ABT-288(ClinicalTrials.gov试验注册号:NCT01077700)有关的心理和睡眠不良事件的发生率增加[34]。GSK239512评价其在SCH中的疗效和安全性的研究目前也完成了第二阶段(ClinicalTrials.gov试验注册号:NCT01009060),发现只有信息“处理速度”优于安慰剂(ES=-0.46),并未有证据表明该人群中GSK239512对SCH认知障碍有整体改善[33]。CEP-26401(Irdabisant)完成了临床研究的第一阶段(ClinicalTrials.gov试验注册号:NCT01903824),该研究涉及健康受试者的认知和睡眠-觉醒适应症的药动学和药效学,但没有披露这些研究的临床结果[60]。MK-0249对与SCH相关的认知缺陷疗效的一项临床试验(ClinicalTrials.gov试验注册号:NCT00506077)结果显示,SCH患者服用10 mg/d的MK-0249,4周后其疗效不优于安慰剂[61]。
在临床前的实验记忆模型中,研究者们观察到了许多H3R拮抗剂的临床前优势,包括它们有改变认知衰退的能力,特别是促觉醒作用,改善短期记忆,提高注意力。然而,到目前为止H3R拮抗剂的临床试验中,对改善SCH认知缺陷的研究结论差异较大。即便如此,仍有许多H3R拮抗剂的药物正在进行第二和第三阶段的临床研究,很多临床结果也并未完全披露。因此,H3R拮抗剂的未来还是充满挑战和期望。
结语 SCH病理机制复杂,目前尚无针对阴性症状和认知功能特别有效的治疗药物,因此迫切需要寻找新的治疗靶点。组胺不仅是一种炎症介质和生物活性物质,还是中枢神经系统中的一种重要的神经递质。H3R几乎完全由中枢神经系统的神经细胞和外周神经系统表达,组胺能系统对不同的大脑功能(从运动到认知过程)发挥重要调节作用。
虽然目前临床前研究与临床研究结果差异巨大,影响了发展H3R的信心,但目前仍然有许多正在进行的临床试验来评估这些药物的效果。随着研究工具及生物基因工程等革新技术的逐渐发展,相信会有部分H3R及拮抗剂被发展为治疗SCH的阴性症状和认知缺损方面的新药。未来,通过确定H3R在几个神经回路不同细胞中的精确表达(如皮质-丘脑回路和中脑皮质-边缘回路),将有助于了解组胺能系统参与大脑生物活动的情况(如运动活动的控制、认知和睡眠-觉醒周期)。今后需要更多的临床研究来评估或证实H3R配体在精神疾病中的作用。
作者贡献声明 吕钦谕 文献调研,综述构思、撰写和修订。陆佳晶 文献整理,综述撰写和修订。易正辉 写作指导和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
WITKIN JM, NELSON DL. Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system[J]. Pharmacol Ther, 2004, 103(1): 1-20.
[DOI]
|
[2] |
AIRAKSINEN MS, PAETAU A, PALJARVI L, et al. Histamine neurons in human hypothalamus: anatomy in normal and Alzheimer diseased brains[J]. Neuroscience, 1991, 44(2): 465-481.
[DOI]
|
[3] |
ERICSON H, WATANABE T, KOHLER C. Morphological analysis of the tuberomammillary nucleus in the rat-brain-delineation of subgroups with antibody against l-histidine decarboxylase as a marker[J]. J Comp Neurol, 1987, 263(1): 1-24.
[DOI]
|
[4] |
PEELL GD, GREEN JP, ELKASHEF AM, et al. The relationship between urine excretion and biogenic amines and their metabolites in cerebrospinal fluid of schizophrenic patients[J]. Schizophr Res, 1996, 19(2-3): 171-176.
[DOI]
|
[5] |
IWABUCHI K, ITO C, TASHIRO M, et al. Histamine H1 receptors in schizophrenic patients measured by positron emission tomography[J]. Eur Neuropsycho-pharmacol, 2005, 15(2): 185-191.
[DOI]
|
[6] |
SADEK B, SAAD A, SADEQ A, et al. Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases[J]. Behav Brain Res, 2016, 312: 415-430.
[DOI]
|
[7] |
NAKAI T, KITAMURA N, HASHIMOTO T, et al. Decreased histamine H1 receptors in the frontal cortex of brains from patients with chronic schizophrenia[J]. Biol Psy, 1991, 30(4): 349-356.
[DOI]
|
[8] |
BARONIO D, GONCHOROSKI T, CASTRO K, et al. Histaminergic system in brain disorders: lessons from the translational approach and future perspectives[J]. Ann Gen Psychiatry, 2014, 13(1): 34.
[DOI]
|
[9] |
BISHARA D. Once-monthly paliperidone injection for the treatment of schizophrenia[J]. Neuropsychiatr Dis Treat, 2010, 6: 561-572.
[PubMed]
|
[10] |
GARBARG M, BARBIN G, FEGER J, et al. Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle[J]. Science, 1974, 186(4166): 833-835.
[DOI]
|
[11] |
BONGERS G, BAKKER RA, LEURS R. Molecular aspects of the histamine H3 receptor[J]. Biochem Pharmacol, 2007, 73(8): 1195-1204.
[DOI]
|
[12] |
ARRANG JM, GARBARG M, SCHWARTZ JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor[J]. Nature, 1983, 302(5911): 832-837.
[DOI]
|
[13] |
ARRANG JM, GARBARG M, LANCELOT JC, et al. Highly potent and selective ligands for histamine H3-receptors[J]. Nature, 1987, 327(6118): 117-123.
[DOI]
|
[14] |
LOVENBERG TW, ROLAND BL, WILSON SJ, et al. Cloning and functional expression of the human histamine H3 receptor[J]. Mol Pharmacol, 1999, 55(6): 1101-1107.
[DOI]
|
[15] |
GBAHOU F, ROULEAU A, ARRANG JM. The histamine autoreceptor is a short isoform of the H₃ receptor[J]. Br J Pharmacol, 2012, 166(6): 1860-1871.
[DOI]
|
[16] |
MARTINEZ-MIR MI, POLLARD H, MOREAU J, et al. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates[J]. Brain Res, 1990, 526(2): 322-327.
[DOI]
|
[17] |
PILLOT C, ORTIZ J, HERON A, et al. Ciproxifan, a histamine H3-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat[J]. J Neurosci, 2002, 22(16): 7272-7280.
[DOI]
|
[18] |
BROWN RE, STEVENS DR, HAAS HL. The physiology of brain histamine[J]. Prog Neurobiol, 2001, 63(6): 637-672.
[DOI]
|
[19] |
HAAS HL, SERGEEVA OA, SELBACH O. Histamine in the nervous system[J]. Physiol Rev, 2008, 88(3): 1183-1241.
[DOI]
|
[20] |
RUITENBEEK PVAN, VERMEEREN A, RIEDEL WJ. Memory in humans is unaffected by central H1-antagonism, while objectively and subjectively measured sedation is increased[J]. Eur Neuropsychopharmacol, 2010, 20(4): 226-235.
[DOI]
|
[21] |
BRIONI JD, ESBENSHADE TA, GARRISON TR, et al. Discovery of histamine H3 antagonists for the treatment of cognitive disorders and Alzheimer's disease[J]. J Pharmacol Exp Ther, 2011, 336(1): 38-46.
[DOI]
|
[22] |
DRUTEL G, PEITSARO N, KARLSTEDT K, et al. Identification of rat H3 receptor isoforms with different brain expression and signaling properties[J]. Mol Pharmacol, 2001, 59(1): 1-8.
[DOI]
|
[23] |
RAPANELLI M, PITTENGER C. Histamine and histamine receptors in Tourette syndrome and other neuropsychiatric conditions[J]. Neuropharmacology, 2016, 106: 85-90.
[DOI]
|
[24] |
SANDER K, KOTTKE T, STARK H. Histamine H3 receptor antagonists go to clinics[J]. Biol Pharm Bull, 2008, 31(12): 2163-2181.
[DOI]
|
[25] |
JIN CY, ANICHTCHIK O, PANULA P. Altered histamine H3 receptor radioligand binding in post-mortem brain samples from subjects with psychiatric diseases[J]. Br J Pharmacol, 2009, 157(1): 118-129.
[DOI]
|
[26] |
ELLENBROEK BA, GHIABI B. The other side of the histamine H3 receptor[J]. Trends Neurosci, 2014, 37(4): 191-199.
[DOI]
|
[27] |
SICRAS-MAINAR A, MAURINO J, RUIZ-BEATO E, et al. Impact of negative symptoms on healthcare resource utilization and associated costs in adult outpatients with schizophrenia: a population-based study[J]. BMC Psychiatry, 2014, 14: 225.
[DOI]
|
[28] |
GONDARD E, ANACLET C, AKAOKA H, et al. Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice[J]. Neuropsychopharmacology, 2013, 38(6): 1015-1031.
[DOI]
|
[29] |
PARMENTIER R, ANACLET C, GUHENNEC C, et al. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders[J]. Biochem Pharmacol, 2007, 73(8): 1157-1171.
[DOI]
|
[30] |
THAKKAR MM. Histamine in the regulation of wakefulness[J]. Sleep Med Rev, 2011, 15(1): 65-74.
[DOI]
|
[31] |
DAUVILLIERS Y, BASSETTI C, LAMMERS GJ, et al. Pitolisant versus placebo or modafinil in patients with narcolepsy: a double-blind, randomised trial[J]. Lancet Neurol, 2013, 12(11): 1068-1075.
[DOI]
|
[32] |
LIN JS, SERGEEVA OA, HAAS HL. Histamine H3 receptors and sleep-wake regulation[J]. J Pharmacol Exp Ther, 2011, 336(1): 17-23.
[DOI]
|
[33] |
BERLIN M, BOYCE CW, RUIZ MDE L. Histamine H3 receptor as a drug discovery target[J]. J Med Chem, 2011, 54(1): 26-53.
[DOI]
|
[34] |
HAIG GM, BAIN E, ROBIESON W, et al. A randomized trial of the efficacy and safety of the H3 antagonist ABT-288 in cognitive impairment associated with schizophrenia[J]. Schizophr Bull, 2014, 40(6): 1433-1442.
[DOI]
|
[35] |
JARSKOG LF, LOWY MT, GROVE RA, et al. A Phase Ⅱ study of a histamine H(3) receptor antagonist GSK239512 for cognitive impairment in stable schizophrenia subjects on antipsychotic therapy[J]. Schizophr Res, 2015, 164(1-3): 136-142.
[DOI]
|
[36] |
OWEN MJ, SAWA A, MORTENSEN PB. Schizophrenia[J]. Lancet (London, England), 2016, 388(10039): 86-97.
[DOI]
|
[37] |
IVACHTCHENKO AV, IVANENKOV YA, SKORENKO AV. 5-HT(6) receptor modulators: a patent update.Part 2.Diversity in heterocyclic scaffolds[J]. Expert Opin Ther Pat, 2012, 22(10): 1123-1168.
[DOI]
|
[38] |
ESBENSHADE TA, BROWMAN KE, BITNER RS, et al. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders[J]. Br J Pharmacol, 2008, 154(6): 1166-1181.
[DOI]
|
[39] |
MOCHIZUKI T, OKAKURA-MOCHIZUKI K, HORII A, et al. Histaminergic modulation of hippocampal acetylcholine release in vivo[J]. J Neurochem, 1994, 62(6): 2275-2282.
[URI]
|
[40] |
MEDHURST AD, ATKINS AR, BERESFORD IJ, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models[J]. J Pharmacol Exp Ther, 2007, 321(3): 1032-1045.
[DOI]
|
[41] |
FOX GB, ESBENSHADE TA, PAN JB, et al. Pharmacological properties of ABT-239[4-(2-{2-[(2R)-2-methylpyrrolidinyl] ethyl}-benzofuran-5-yl) benzonitrile]: Ⅱ neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist[J]. J Pharmacol Exp Ther, 2005, 313(1): 176-190.
[DOI]
|
[42] |
WANG N, MA J, LIU J, et al. Histamine H3 receptor antagonist enhances neurogenesis and improves chronic cerebral hypoperfusion-induced cognitive impairments[J]. Front Pharmacol, 2020, 10: 1583.
[DOI]
|
[43] |
CHEN YN, SHA HH, WANG YW, et al. Histamine 2/3 receptor agonists alleviate perioperative neurocognitive disorders by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway in aged rats[J]. J Neuroinflammation, 2020, 17(1): 217.
[DOI]
|
[44] |
LIGNEAU X, PERRIN D, LANDAIS L, et al. BF2.649[1-{3-[3-(4-Chlorophenyl) propoxy] propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: preclinical pharmacology[J]. J Pharmacol Exp Ther, 2007, 320(1): 365-375.
[DOI]
|
[45] |
PANULA P, CHAZOT PL, COWART M, et al. International union of basic and clinical pharmacology.XCVIII.Histamine receptors[J]. Pharmacol Rev, 2015, 67(3): 601-655.
[DOI]
|
[46] |
SADEK B, SAAD A, SUBRAMANIAN D, et al. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats[J]. Neuropharmacology, 2016, 106: 46-55.
[DOI]
|
[47] |
JIA F, KATO M, DAI H, et al. Effects of histamine H(3) antagonists and donepezil on learning and mnemonic deficits induced by pentylenetetrazol kindling in weanling mice[J]. Neuropharmacology, 2006, 50(4): 404-411.
[DOI]
|
[48] |
COWART M, FAGHIH R, CURTIS M P, et al. 4-(2-[2-(2(R)-methylpyrrolidin-1-yl) ethyl] benzofuran-5-yl) benzonitrile and related 2-aminoethylbenzofuran H3 receptor antagonists potently enhance cognition and attention[J]. J Med Chem, 2005, 48(1): 38-55.
[DOI]
|
[49] |
GUO RX, ANACLET C, ROBERTS JC, et al. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox-/-mice[J]. Br J Pharmacol, 2009, 157(1): 104-117.
[DOI]
|
[50] |
GROVE RA, HARRINGTON CM, MAHLER A, et al. A randomized, double-blind, placebo-controlled, 16-week study of the H3 receptor antagonist, GSK239512 as a monotherapy in subjects with mild-to-moderate Alzheimer's disease[J]. Curr Alzheimer Res, 2014, 11(1): 47-58.
[DOI]
|
[51] |
TOYOTA H, DUGOVIC C, KOEHL M, et al. Behavioral characterization of mice lacking histamine H(3) receptors[J]. Mol Pharmacol, 2002, 62(2): 389-397.
[DOI]
|
[52] |
HUDKINS RL, BECKNELL NC, LYONS JA, et al. 3, 4-Diaza-bicyclo[4.1.0] hept-4-en-2-one phenoxypropylamine analogs of irdabisant (CEP-26401) as potent histamine-3 receptor inverse agonists with robust wake-promoting activity[J]. Eur J Med Chem, 2015, 95: 349-356.
[DOI]
|
[53] |
GRIEBEL G, PICHAT P, PRUNIAUX MP, et al. SAR110894, a potent histamine H₃-receptor antagonist, displays procognitive effects in rodents[J]. Pharmacol Biochem Behav, 2012, 102(2): 203-214.
[DOI]
|
[54] |
BROWN JW, WHITEHEAD CA, BASSO AM, et al. Preclinical evaluation of non-imidazole histamine H3 receptor antagonists in comparison to atypical antipsychotics for the treatment of cognitive deficits associated with schizophrenia[J]. Int J Neuropsychopharmacol, 2013, 16(4): 889-904.
[DOI]
|
[55] |
GUILLOUX JP, SAMUELS BA, MENDEZ DI, et al. S 38093, a histamine H antagonist/inverse agonist, promotes hippocampal neurogenesis and improves context discrimination task in aged mice[J]. Sci Rep, 2017, 7: 42946.
[DOI]
|
[56] |
LOUIS C, LLOPIS K, DANOBER L, et al. New procognitive enhancers acting at the histamine H3 and AMPA receptors reverse natural forgetting in mice: comparisons with donepezil and memantine in the object recognition task[J]. Behav Pharmacol, 2019, 30(4): 351-357.
[DOI]
|
[57] |
NOMURA H, MIZUTA H, NORIMOTO H, et al. Central histamine boosts perirhinal cortex activity and restores forgotten object memories[J]. Biol Psychiatry, 2019, 86(3): 230-239.
[DOI]
|
[58] |
YAZDI A, DOOSTMOHAMMADI M, POURHOSSEIN MF, et al. Betahistine, prevents kindling, ameliorates the behavioral comorbidities and neurodegeneration induced by pentylenetetrazole[J]. Epilepsy Behav, 2020, 105: 106956.
[DOI]
|
[59] |
HINO N, MARUMO T, KOTANI M, et al. A novel potent and selective histamine H receptor antagonist enerisant: in vitro profiles, in vivo receptor occupancy, and wake-promoting and procognitive effects in rodents[J]. J Pharmacol Exp Ther, 2020, 375(2): 276-285.
[DOI]
|
[60] |
SPIEGELSTEIN O, STEVENS J, VAN GERVEN J, et al. Pharmacokinetics, pharmacodynamics and safety of CEP-26401, a high-affinity histamine-3 receptor antagonist, following single and multiple dosing in healthy subjects[J]. J Psychopharmacol, 2016, 30(10): 983-993.
[DOI]
|
[61] |
HSIEH GC, CHANDRAN P, SALYERS AK, et al. H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats[J]. Pharmacol Biochem Behav, 2010, 95(1): 41-50.
[DOI]
|