2. 南方医科大学附属东莞市医院, 东莞市人民医院神经内科 东莞 523000
2. Department of Neurology, Dongguan Hospital, Southern Medical University(Dongguan People's Hospital), Dongguan 523000, Guangdong Province, China
脑血管周围间隙(perivascular spaces,PVS)是指脑小血管从蛛网膜下腔穿过脑实质时围绕在其周围充满液体的间隙[1]。PVS最早是Durand Fardel和Pestalozzi分别在1842年及1849年提出。Rudolf Virchow及Charles Philippe Robin分别在1951年及1959年在病理上进一步证实PVS的存在,故PVS又称为V-R间隙[2]。正常的PVS在CT及MRI上很难辨认,只有当PVS扩大到一定程度才能在MRI上显示。早在1843年,Durant Fardel就提出血管周围间隙扩大(enlarged perivascular spaces,EPVS)的概念[3],但并未阐述其临床意义。既往有研究认为,尽管EPVS在很多老年人中出现,但其不具备明显的临床意义[4-5]。随着研究的进展,许多研究发现EPVS常见于一些脑器质性疾病中,并与一些脑影像学病变如脑微出血、腔隙性脑梗死及脑白质病变密切相关。目前较一致的观点认为,EPVS是脑小血管病(cerebral small vessel disease,CSVD)的一种新的早期的影像学标志[6]。但目前EPVS的形成机制并不明确,有研究认为其与血管搏动、呼吸运动、睡眠觉醒周期、脑部淋巴系统和水通道蛋白-4(aquaporin 4,AQP4)[3, 7-11]有关;与认知功能障碍[12-14]和抑郁症[15-16]有显著的相关性。目前临床医师对EPVS的临床意义认识不足,国内大部分关于EPVS的综述[17-19]未对其病理生理机制进行详细的阐述。本文就EPVS的解剖特点、影像学评估、病理生理机制及其与认知功能障碍和抑郁症的关系进行综述。
EPVS的解剖特点及影像学评估 PVS是指围绕在脑部小血管周围、充满液体的间隙,但部位不同,组成各异。其解剖特点是:(1)基底节区的小动脉被两层软脑膜包围,血管周围的间隙位于这两层之间;这些血管周围间隙与蛛网膜下腔相通(图 1A)[3];(2)大脑皮质内的动脉被一层由软脑膜延伸而来的软膜包裹,皮质内动脉周围间隙与软脑膜下腔相通(图 1B),但其是否与蛛网膜下腔相通仍有争议[3];(3)大脑静脉周围缺乏软脑膜延伸的软膜,故静脉周围间隙与软脑膜下腔是连续的[20]。
![]() |
①Subarachnoid space; ②Subpial space; ③Brain; ④Arteriole; ⑤Meningeal membrane; ⑥Perivascular space; ⑦Meningeal membrane. 图 1 基底节区及脑皮质下的血管周围间隙示意图 Fig 1 EPVS in basal ganglia and subcortical cortex |
EPVS常见于基底节区、皮质下白质、中脑及海马,其中基底节区、半卵圆中心、中脑为EPVS的3个特征性的部位[20]。据此,EPVS分为三型:(1)Ⅰ型EPVS,沿豆纹动脉经前穿质进入基底节区;(2)Ⅱ型EPVS,沿髓质动脉进入大脑半球灰质并延伸到皮质下白质;(3)Ⅲ型EPVS,沿大脑后动脉的穿通支进入中脑。
由于其分布部位差异,EPVS在MRI不同切面上形状不一,表现为边界清晰、圆形、卵圆形或线状的结构,一般最大直径 < 3 mm;信号与脑脊液类似,无占位及增强效应。在T1加权(T1 weighted imaging,T1WI)上呈低信号,T2加权(T2 weighted imaging,T2WI)上呈高信号,液体衰减翻转恢复序列(fluid-attenuated inversion recovery,FLAIR)上呈低信号,常与穿支动脉伴行[21]。因EPVS在T2WI上显著,故常在此序列上进行评估(图 2)。
![]() |
A: Basal ganglia EPVS (arrow heads); B: Centrum semiovale EPVS (arrow heads); C: Midbrain EPVS (arrow heads); D: Hippocampus EPVS (arrow heads). 图 2 四个常见部位血管周围间隙扩大的影像示意图 Fig 2 Images of EPVS in four common sites |
常采用视觉半定量方法评估EPVS严重程度,但方法未统一。由于不同位置的EPVS解剖学差异,故不同区域的EPVS评估方法不同。最常用的是Potter[22]评估法,以EPVS负荷较重的一侧大脑半球对基底节区及半卵圆中心进行计数:0分为0个EPVS,1分为1~10个EPVS,2分为11~20个EPVS,3分为21~40个EPVS,4分为 > 40个EPVS;中脑评分:0分为无EPVS,1分为有EPVS。但其未对海马进行评估。MacLullich等[23]对负荷较重的大脑半球基底节区、半卵圆中心、海马中的EPVS也采用了0~4分的评估。王拥军团队[24]对海马EPVS的评级为:1级,< 5个;2级,5~10个;3级,> 10个。Adams等[25]则将左右半球海马之和计数不进行分级。以上方法各有利弊,有的考虑血管分布,有的考虑易操作性。但视觉评估法多样,且有主观及上限的效应,不能更好地反映EPVS的严重程度,故有学者开发3D MRI自动化评估EPVS负荷。与视觉评估的一致性(0.74)高于观察者间的一致性(0.68);与视觉评估的再现率(0.80)相比,扫描可重现性非常高(0.93)[26-27]。
EPVS的病理生理机制 PVS在脑内液体的转运中起着重要作用。驱动液体经过PVS主要有以下因素:血管搏动、呼吸运动、睡眠觉醒周期、脑部淋巴系统和AQP4[3, 28]。
血管搏动 颅内有限的组织顺应性促进了整个大脑动脉压力的传播,导致微血管持续的搏动,保存了整个血管床搏动从而将液体和废物转运出大脑[9],这部分解释了为什么上游端的小动脉周围间隙扩大,而不是下游端的静脉周围间隙扩大。小动脉周围间隙的形状似乎对液体流动起作用,最佳横截面为扁圆状,小动脉位于中心[29]。在此基础上,脑脊液压力、组织压力或血管功能的微小变化可以改变血管周围空间的形状,引起血管周围间隙的功能紊乱[20]。当血压正常时,小动脉搏动和代谢微粒运动平稳持续向前。在血压升高时,远端血管的搏动幅度增加,使微粒的突然运动和断断续续的逆流,导致PVS的净流量减少,代谢废物清除减少[29],进而可能导致EPVS形成。研究表明颅内血管搏动的增加与PVS可见性的增加有关[9]。因此,血管的搏动,尤其是脑部小动脉的搏动直接参与了脑部EPVS的生成。
呼吸运动 呼吸运动增加了脑脊液(cerebrospinal fluid,CSF)在脑部的周期性转运,超过心脏搏动引起脑脊液的波动;吸气增加脑脊液流入心室的流量,呼气则相反[30]。呼吸运动通过影响脑脊液的转运,进而可能影响PVS内的液体排出[10]。呼吸运动的变化间接影响着脑部PVS的大小。
睡眠觉醒周期 实验表明,在睡眠期间PVS对脑脊液的吸收和细胞间液(interstitial fluid,ISF)排出增加[31]。Plog等[11]的实验发现,小鼠大脑中ISF的清除主要发生在睡眠期间。小鼠在睡眠期间PVS中废物清除率最大;与睡眠时相比,当小鼠清醒时进入PVS的示踪剂流入减少了95%。同样,睡眠小鼠体内β淀粉样蛋白(amyloid β-protein,Aβ)的清除速度也是清醒小鼠的两倍。睡眠质量差可能会影响神经细胞代谢废物的清除,中断ISF的引流,并可能导致EPVS发生[11]。Ju等[32]研究发现,慢波睡眠中断导致第二天CSF Aβ水平升高,腰椎穿刺前一周睡眠效率下降与CSF tau水平升高有关。这可能为睡眠中断增加了神经元的活动并产生了更多的蛋白质,也可能是睡眠中断减少了PVS对废物的转运,导致Aβ和tau蛋白的清除减少阻塞PVS导致EPVS形成。所以睡眠觉醒周期的改变可能影响着EPVS的形成。
脑部淋巴系统和AQP4 全脑的液体运输途径,称为脑部淋巴系统,支持沿血管周围途径快速交换CSF和ISF[33]。淋巴系统主要由3部分组成:(1)CSF沿贯穿动脉周围血管间隙流入;(2)CSF通过较宽的间隙弥散;(3)ISF沿直径较大的引流静脉流出,重新进入脑室和脑池内的CSF中[34]。最终,清除到脑脊液的间质溶质通过静脉窦旁的脑膜淋巴管、颅神经鞘和脊神经鞘,以及筛板流出大脑[35]。星形胶质细胞末梢包围着脑微血管,大量表达的星形胶质细胞AQP4主要位于血管末梢,与基底膜相邻。由于这种解剖结构为PVS和胶质细胞之间的快速液体运动提供了途径,AQP4被提出用于支持血管周围液体和溶质沿淋巴系统的运动[36]。Huber等[37]发现,AQP4促进剂增强了从胶质细胞到毛细血管周围间隙间质液体的运输。AQP4是血管周围星型胶质细胞上的通道蛋白,是正常淋巴功能的调节器[7],其促进了CSF从PVS向ISF间隙的转运和ISF的主动排出[33]。对AQP4基因敲除小鼠的研究表明,AQP4基因对于液体从PVS快速进入ISF和排出大脑是必要的[28]。Asgari等[38]将人的AQP4-IgG注入小鼠脑内会引起星形胶质细胞病变和血脑屏障破坏,这也与Nagelhus等[39]AQP4在血脑屏障及血脑脊液屏障中高表达,控制着双向的液体交换的研究结果一致。Chen等[40]研究表明,在卒中后痴呆的患者中,用AQP4免疫荧光标记发现AQP4减少,但与卒中后无痴呆患者相比,其EPVS负荷增加。PVS作为脑部淋巴系统的一部分及AQP4促进脑脊液转运出PVS,这均直接影响EPVS的形成。
EPVS的临床意义
EPVS与CSVD的关系 CSVD泛指脑的小穿支动脉、毛细血管及小静脉的各种病变所导致的临床、认知、影像学及病理表现的综合征[6],其主要的影像包括脑白质病变、脑微出血、腔隙性梗死及EPVS。CSVD导致约20%的缺血性脑卒中和50%以上的认知障碍[41-42]。EPVS被认为是CSVD的最早期的影像学标志之一,其与年龄密切相关,被认为是脑部老化的标志[4]。研究表明[24]年龄、腔隙与基底节EPVS显著相关;高血压、男性是脑白质EPVS的独立危险因素;女性、小动脉闭塞卒中亚型在海马中发生更严重EPVS的风险相对较高;严重脑白质病变与基底节区和海马中EPVS负荷显著相关。Lau等[43]总结出,EPVS与年龄、高血压、肾损伤、脑白质病变及腔隙相关。基底节区EPVS与男性、平均收缩压和舒张压、深部或幕下脑微出血有关;而半卵圆中心EPVS与脑叶微出血有关;在脑淀粉样血管病患者中也发现半卵圆中心EPVS的高负荷[43]。所以EPVS可看作高血压及脑微出血潜在的影像学标志。不同部位EPVS的危险因素不完全相同,提示其形成机制可能存在差异。EPVS与脑微出血、脑白质病变、腔隙密切相关,而这些影像学标志与认知功能下降、卒中复发、卒中后抑郁、死亡率的增加及卒中后不良的功能结局相关[44]。
EPVS与认知功能障碍 EPVS与年龄显著相关,高负荷的EPVS可能提示脑部神经退行性病变,如内侧颞叶、海马等萎缩[45],进而使认知功能受损。皮质胆碱能通路受损会导致认知功能障碍[46],在基底节区和半卵圆中心高负荷的EPVS可能会损害引起皮质胆碱能通路,进而使认知功能下降。EPVS与认知功能下降密切相关,在阿尔茨海默症和轻度认知功能障碍患者上尤为明显。Chen等[47]发现阿尔茨海默症和轻度认知障碍患者的EPVS计数明显高于对照。20世纪初,Binswanger和Alzheimer描述了微血管的变化(包括EPVS),为认知障碍提供了血管基础的早期证据。MacLullich等[23]对健康老年人群的研究发现基底节区及半卵圆心EPVS计数增加与非语言推理能力、视觉空间认知能力下降有关;但海马EPVS与认知能力无显著相关性。两项病例对照研究[47-48]均报道EPVS负荷增加可能导致认知能力下降。一项基于健康老人的前瞻性研究发现高负荷的EPVS会使患者增加痴呆的风险[49]。关于高血压和腔隙性梗死的研究[50]表明,在校正脑白质病变、年龄、性别等混杂因素后,基底节区EPVS的计数增加与信息处理速度的下降有关,基底节、半卵圆中心EPVS与记忆下降均有关。另外,Ding等[51]基于2 612名老年人的5年前瞻性队列研究发现,EPVS与信息处理速度下降相关,并且使血管性痴呆的风险增加了两倍多。Arba等[12]发现基底节区而不是半卵圆中心的EPVS与认知功能下降有关。但Hurford等[52]和Smeijer等[53]研究认为EPVS与认知障碍没有独立的联系;一个小样本研究发现,EPVS并非认知能力下降的预测因子[54]。以上研究EPVS与认知功能障碍关系结果并不一致,可能与每个研究的入组对象、评估方法的差异有关。但大多数研究都表明EPVS负荷的增加与认知功能下降有关,尤其是基底节区EPVS。不同部位的EPVS对认知功能有不同的影响,这也佐证了不同部位的EPVS可能有不同形成机制。此外,由于认知功能包含的范围广泛(如记忆力、执行功能、注意力及视空间功能等),EPVS可能只影响部分的认知域(尤其是皮层下的认知功能),而并不一定影响全脑的总体认知功能。未来需要前瞻性研究阐明EPVS对具体认知域的影响。
EPVS与抑郁症 EPVS的常见部位与情绪调节通路(如额叶-皮层下环路、扣带回-皮质环路和皮质-基底节环路)存在重叠,破坏了情绪调节的神经回路,因此可能导致抑郁症的发生[15-16]。微血管功能障碍被认为是抑郁症发展的关键,尤其是在老年人[55]。EPVS是与高血压或淀粉样蛋白沉积等血管危险相关的脑微血管异常的敏感标志物,也是炎症的标志物,可能在抑郁症的发病机制中起作用[56-57]。在老年人中,EPVS与抑郁症发生风险的增加[58]和抗抑郁症药物低反应性有关[59]。然而,在其他研究[60-61]中,半卵圆中心EPVS而非基底节区EPVS在卒中后抑郁(post-stroke depression,PSD)的患者中也更为严重,并且与抗抑郁反应差有关,这可能和研究人群及EPVS评估方法的差异相关。大约有1/3的脑卒中患者会发生PSD[62]。越来越多的证据表明脑小血管病,如脑微出血、腔隙和脑白质病变是PSD发病的重要因素[63-65]。一项基于腔隙性脑梗死的研究发现PSD患者的EPVS负荷较高[65]。EPVS与卒中后抑郁密切相关。梁燕等[60]研究表明卒中后3个月的PSD发生率达21%,其中34.6%和39.4%的患者有较高程度的基底节区EPVS和半卵圆中心EPVS。因此,大量的EPVS可能直接压迫和破坏深部白质纤维束,导致抑郁症的发生。另外,脑卒中患者常合并不同程度的脑小血管病(包括EPVS),可能影响相关神经递质的合成与释放,进而导致抑郁症的发生[66]。最近一项基于大规模脑网络的研究表明脑小血管病破坏了全脑或部分脑组织的结构,而抑郁症患者的脑网络效率低下[67]。此外,随着年龄的增长,EPVS更为普遍。因此,EPVS可能是大脑老化的一个标志,其“脑储备”减少,增加老年人抑郁症的风险[60]。
结语 血管周围间隙是正常的一种解剖结构,但EPVS可能是脑小血管病和神经变性病的一种早期影像学标志,随着影像学的发展,人们对EPVS的认识也逐渐深入,其在疾病的诊疗过程及预后评估中具有潜在的临床价值。目前EPVS的危险因素及病理生理机制尚未十分明确。EPVS形成的病理生理机制复杂,本文总结4种驱动因素为血管搏动、呼吸运动、睡眠觉醒周期、脑部淋巴系统和AQP4;其与认知功能障碍、抑郁症相关,但目前尚无定论。另外,EPVS的分布与相关疾病的关系并不明确,未来需要设计更严谨、更大样本量的前瞻性随访研究阐述EPVS与认知功能障碍及抑郁症的关系。
作者贡献声明 梁文聪 论文撰写和修订,制图。陈仰昆,肖卫民 论文写作指导和修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
RUDIE JD, RAUSCHECKER AM, NABAVIZADEH SA, et al. Neuroimaging of dilated perivascular spaces: from benign and pathologic causes to mimics[J]. J Neuroimaging, 2018, 28(2): 139-149.
[DOI]
|
[2] |
WOOLLAM DH, MILLEN JW. The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces[J]. J Anat, 1955, 89(2): 193-200.
[URI]
|
[3] |
WARDLAW JM, BENVENISTE H, NEDERGAARD M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology[J]. Nat Rev Neurol, 2020, 16(3): 137-153.
[DOI]
|
[4] |
GROESCHEL S, CHONG WK, SURTEES R, et al. Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature[J]. Neuroradiology, 2006, 48(10): 745-754.
[DOI]
|
[5] |
BARKHOF F. Enlarged Virchow-Robin spaces: do they matter?[J]. J Neurol Neurosurg Psychiatry, 2004, 75(11): 1516-1517.
[URI]
|
[6] |
WARDLAW JM, SMITH C, DICHGANS M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging[J]. Lancet Neurol, 2013, 12(5): 483-497.
[DOI]
|
[7] |
MESTRE H, KOSTRIKOV S, MEHTA RI, et al. Perivascular spaces, glymphatic dysfunction, and small vessel disease[J]. Clin Sci (Lond), 2017, 131(17): 2257-2274.
[DOI]
|
[8] |
XUE Y, LIU N, ZHANG M, et al. Concomitant enlargement of perivascular spaces and decrease in glymphatic transport in an animal model of cerebral small vessel disease[J]. Brain Res Bull, 2020, 161: 78-83.
[DOI]
|
[9] |
SHI Y, THRIPPLETON MJ, BLAIR GW, et al. Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow[J]. J Cereb Blood Flow Metab, 2020, 40(1): 85-99.
[DOI]
|
[10] |
DREHA-KULACZEWSKI S, JOSEPH AA, MERBOLDT KD, et al. Identification of the upward movement of human csf in vivo and its relation to the brain venous system[J]. J Neurosci, 2017, 37(9): 2395-2402.
[DOI]
|
[11] |
BEREZUK C, RAMIREZ J, GAO F, et al. Virchow-Robin spaces: correlations with polysomnography-derived sleep parameters[J]. Sleep, 2015, 38(6): 853-858.
|
[12] |
ARBA F, QUINN TJ, HANKEY GJ, et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. Int J Stroke, 2018, 13(1): 47-56.
[DOI]
|
[13] |
JIE W, LIN G, LIU Z, et al. The relationship between enlarged perivascular spaces and cognitive function: a meta-analysis of observational studies[J]. Front Pharmacol, 2020, 11: 715.
[DOI]
|
[14] |
NIAZI M, KARAMAN M, DAS S, et al. Quantitative MRI of perivascular spaces at 3T for early diagnosis of mild cognitive impairment[J]. AJNR Am J Neuroradiol, 2018, 39(9): 1622-1628.
[DOI]
|
[15] |
SHI Y, XIANG Y, YANG Y, et al. Depression after minor stroke: Prevalence and predictors[J]. J Psychosom Res, 2015, 79(2): 143-147.
[DOI]
|
[16] |
ZHANG Y, WANG C, SUN C, et al. Neural complexity in patients with poststroke depression: A resting EEG study[J]. J Affect Disord, 2015, 188: 310-318.
[DOI]
|
[17] |
丁娥, 谈跃. 血管周围间隙扩大的临床进展[J]. 医学综述, 2017, 23(15): 2938-2942. [DOI]
|
[18] |
张晗, 郑东明. 扩大的血管周围间隙临床意义的研究进展[J]. 国际神经病学神经外科学杂志, 2019, 46(6): 684-688. [CNKI]
|
[19] |
陈铮珍, 任传根, 乔会煌, 等. 脑血管周围间隙的研究进展[J]. 解剖学杂志, 2016, 39(6): 740-743. [DOI]
|
[20] |
KWEE RM, KWEE TC. Virchow-Robin spaces at MR imaging[J]. Radiographics, 2007, 27(4): 1071-1086.
[DOI]
|
[21] |
WARDLAW JM, SMITH EE, BIESSELS GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. The Lancet Neurology, 2013, 12(8): 822-838.
[DOI]
|
[22] |
POTTER GM, CHAPPELL FM, MORRIS Z, et al. Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability[J]. Cerebrovasc Dis, 2015, 39(3-4): 224-231.
[DOI]
|
[23] |
MACLULLICH AM, WARDLAW JM, FERGUSON KJ, et al. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men[J]. J Neurol Neurosurg Psychiatry, 2004, 75(11): 1519-1523.
[DOI]
|
[24] |
ZHANG C, CHEN Q, WANG Y, et al. Risk factors of dilated Virchow-Robin spaces are different in various brain regions[J]. PLoS One, 2014, 9(8): e105505.
[DOI]
|
[25] |
ADAMS HH, CAVALIERI M, VERHAAREN BF, et al. Rating method for dilated Virchow-Robin spaces on magnetic resonance imaging[J]. Stroke, 2013, 44(6): 1732-1735.
[DOI]
|
[26] |
DUBOST F, ADAMS H, BORTSOVA G, et al. 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI[J]. Med Image Anal, 2019, 51: 89-100.
[DOI]
|
[27] |
RAMIREZ J, BEREZUK C, MCNEELY AA, et al. Visible Virchow-Robin spaces on magnetic resonance imaging of Alzheimer's disease patients and normal elderly from the Sunnybrook Dementia Study[J]. J Alzheimers Dis, 2015, 43(2): 415-424.
[URI]
|
[28] |
MESTRE H, HABLITZ LM, XAVIER AL, et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain[J]. Elife, 2018, 7: e40070.
[DOI]
|
[29] |
MESTRE H, TITHOF J, DU T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension[J]. Nat Commun, 2018, 9(1): 4878.
[DOI]
|
[30] |
DREHA-KULACZEWSKI S, JOSEPH AA, MERBOLDT KD, et al. Inspiration is the major regulator of human CSF flow[J]. J Neurosci, 2015, 35(6): 2485-2491.
[DOI]
|
[31] |
XIE L, KANG H, XU Q, et al. Sleep drives metabolite clearance from the adult brain[J]. Science, 2013, 342(6156): 373-377.
[DOI]
|
[32] |
JU YS, OOMS SJ, SUTPHEN C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels[J]. Brain, 2017, 140(8): 2104-2111.
[DOI]
|
[33] |
ILIFF JJ, WANG M, LIAO Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta[J]. Sci Transl Med, 2012, 4(147): 147r.
|
[34] |
JESSEN NA, MUNK AS, LUNDGAARD I, et al. The Glymphatic System: A Beginner's Guide[J]. Neurochem Res, 2015, 40(12): 2583-2599.
[DOI]
|
[35] |
LOUVEAU A, SMIRNOV I, KEYES TJ, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560): 337-341.
[DOI]
|
[36] |
NEDERGAARD M. Neuroscience.Garbage truck of the brain[J]. Science, 2013, 340(6140): 1529-1530.
[DOI]
|
[37] |
HUBER VJ, IGARASHI H, UEKI S, et al. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier[J]. NeuroReport, 2018, 29(9): 697-703.
[DOI]
|
[38] |
ASGARI N, BERG CT, MORCH MT, et al. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier[J]. Ann Clin Transl Neurol, 2015, 2(8): 857-863.
[DOI]
|
[39] |
NAGELHUS EA, OTTERSEN OP. Physiological roles of aquaporin-4 in brain[J]. Physiol Rev, 2013, 93(4): 1543-1562.
[DOI]
|
[40] |
CHEN A, AKINYEMI RO, HASE Y, et al. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia[J]. Brain, 2016, 139(Pt 1): 242-258.
|
[41] |
TENG Z, DONG Y, ZHANG D, et al. Cerebral small vessel disease and post-stroke cognitive impairment[J]. Int J Neurosci, 2017, 127(9): 824-830.
[DOI]
|
[42] |
SUN JH, TAN L, YU JT. Post-stroke cognitive impairment: epidemiology, mechanisms and management[J]. Ann Transl Med, 2014, 2(8): 80.
[URI]
|
[43] |
LAU KK, LI L, LOVELOCK CE, et al. Clinical correlates, ethnic differences, and prognostic implications of perivascular spaces in transient ischemic attack and ischemic stroke[J]. Stroke, 2017, 48(6): 1470-1477.
[DOI]
|
[44] |
LIANG Y, CHEN YK, DENG M, et al. Association of cerebral small vessel disease burden and health-related quality of life after acute ischemic stroke[J]. Front Aging Neurosci, 2017, 9: 372.
[DOI]
|
[45] |
许志祥, 吴云成. 卒中后认知功能障碍发病机制的研究进展[J]. 上海医药, 2018, 39(17): 5-17. [DOI]
|
[46] |
LIM JS, KIM N, JANG MU, et al. Cortical hubs and subcortical cholinergic pathways as neural substrates of poststroke dementia[J]. Stroke, 2014, 45(4): 1069-1076.
[DOI]
|
[47] |
CHEN W, SONG X, ZHANG Y. Assessment of the Virchow-Robin Spaces in Alzheimer disease, mild cognitive impairment, and normal aging, using high-field MR imaging[J]. AJNR Am J Neuroradiol, 2011, 32(8): 1490-1495.
[DOI]
|
[48] |
FAVARETTO A, LAZZAROTTO A, RICCARDI A, et al. Enlarged Virchow Robin spaces associate with cognitive decline in multiple sclerosis[J]. PLoS One, 2017, 12(10): e0185626.
[DOI]
|
[49] |
ZHU Y-C, DUFOUIL C, SOUMARÉ A, et al. High degree of dilated virchow-robin spaces on MRI is associated with increased risk of dementia[J]. Journal of Alzheimer's Disease, 2010, 22(2): 663-672.
[DOI]
|
[50] |
HUIJTS M, DUITS A, STAALS J, et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease[J]. Curr Neurovasc Res, 2014, 11(2): 136-141.
[DOI]
|
[51] |
DING J, SIGURETHSSON S, JONSSON PV, et al. Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the Age, Gene/Environment Susceptibility-Reykjavik Study[J]. JAMA Neurol, 2017, 74(9): 1105-1112.
[DOI]
|
[52] |
HURFORD R, CHARIDIMOU A, FOX Z, et al. MRI-visible perivascular spaces: relationship to cognition and small vessel disease MRI markers in ischaemic stroke and TIA[J]. J Neurol Neurosurg Psychiatry, 2014, 85(5): 522-525.
[DOI]
|
[53] |
SMEIJER D, IKRAM MK, HILAL S. Enlarged Perivascular Spaces and Dementia: A Systematic Review[J]. J Alzheimers Dis, 2019, 72(1): 247-256.
[DOI]
|
[54] |
BENJAMIN P, TRIPPIER S, LAWRENCE AJ, et al. Lacunar infarcts, but not perivascular spaces, are predictors of cognitive decline in cerebral small-vessel disease[J]. Stroke, 2018, 49(3): 586-593.
[DOI]
|
[55] |
AGTMAAL MJMVAN, HOUBEN A, POUWER F, et al. Association of microvascular dysfunction with late-life depression: a systematic review and meta-analysis[J]. JAMA Psychiatry, 2017, 74(7): 729-739.
[DOI]
|
[56] |
RAMIREZ J, BEREZUK C, MCNEELY AA, et al. Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases[J]. Cell Mol Neurobiol, 2016, 36(2): 289-299.
[DOI]
|
[57] |
SANDU RE, BUGA AM, UZONI A, et al. Neuroinflammation and comorbidities are frequently ignored factors in CNS pathology[J]. Neural Regen Res, 2015, 10(9): 1349-1355.
[DOI]
|
[58] |
SLOTEN TTVAN, SIGURDSSON S, BUCHEM MAVAN, et al. Cerebral small vessel disease and association with higher incidence of depressive symptoms in a general elderly population: The AGES-Reykjavik Study[J]. Am J Psychiatry, 2015, 172(6): 570-578.
[DOI]
|
[59] |
PATANKAR TF, BALDWIN R, MITRA D, et al. Virchow-Robin space dilatation may predict resistance to antidepressant monotherapy in elderly patients with depression[J]. J Affect Disord, 2007, 97(1-3): 265-270.
[DOI]
|
[60] |
LIANG Y, CHAN YL, DENG M, et al. Enlarged perivascular spaces in the centrum semiovale are associated with poststroke depression: A 3-month prospective study[J]. J Affect Disord, 2018, 228: 166-172.
[DOI]
|
[61] |
曹志勇, 刘至阳, 汪莉, 等. 缺血性卒中患者卒中后抑郁与血管周围间隙扩大的相关性研究[J]. 国际脑血管病杂志, 2015, 23(3): 180-183. [DOI]
|
[62] |
HACKETT ML, PICKLES K. Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies[J]. Int J Stroke, 2014, 9(8): 1017-1025.
[DOI]
|
[63] |
SANTOS M, GOLD G, KOVARI E, et al. Differential impact of lacunes and microvascular lesions on poststroke depression[J]. Stroke, 2009, 40(11): 3557-3562.
[DOI]
|
[64] |
TANG WK, CHEN YK, LU JY, et al. Cerebral microbleeds and depression in lacunar stroke[J]. Stroke, 2011, 42(9): 2443-2446.
[DOI]
|
[65] |
ZHANG X, TANG Y, XIE Y, et al. Total magnetic resonance imaging burden of cerebral small-vessel disease is associated with post-stroke depression in patients with acute lacunar stroke[J]. Eur J Neurol, 2017, 24(2): 374-380.
[DOI]
|
[66] |
LOUBINOUX I, KRONENBERG G, ENDRES M, et al. Post-stroke depression: mechanisms, translation and therapy[J]. J Cell Mol Med, 2012, 16(9): 1961-1969.
[DOI]
|
[67] |
XIE X, SHI Y, ZHANG J. Structural network connectivity impairment and depressive symptoms in cerebral small vessel disease[J]. J Affect Disord, 2017, 220: 8-14.
[DOI]
|