文章快速检索     高级检索
   复旦学报(医学版)  2021, Vol. 48 Issue (4): 443-450      DOI: 10.3969/j.issn.1672-8467.2021.04.003
0
Contents            PDF            Abstract             Full text             Fig/Tab
Src激酶在正常发育和未成熟大鼠缺氧缺血脑白质损伤中的表达变化
邱寒1,2 , 钱天阳1,2 , 吴彤1,2 , 王来栓1,2     
1. 国家儿童医学中心/复旦大学附属儿科医院新生儿科;
2. 国家卫生健康委员会新生儿疾病重点实验室(复旦大学) 上海 201102
摘要目的 研究大鼠正常发育脑中和缺氧缺血性脑白质损伤中Src激酶活化的表达。方法 对出生后第3天SD大鼠幼仔进行右颈总动脉结扎,然后进行2.5 h缺氧(6%氧气)造模。通过苏木精-伊红(HE)染色、蛋白免疫印迹和免疫荧光染色观察神经病理学改变。收集出生后6、10、17天对照组和缺氧缺血(hypoxia-ischemia,HI)组大鼠的脑组织,通过蛋白质免疫印迹和免疫荧光染色评估磷酸化Src激酶的表达水平,并通过三重免疫荧光染色明确磷酸化Src激酶与少突胶质细胞(oligodendrocyte,OL)共定位情况。结果 在正常发育的对照组大鼠中,脑内磷酸化Src激酶的表达在出生后6和10天时处于高峰期。磷酸化的Src主要与成熟的OLs共定位,而在少突胶质前体细胞中很少观察到与其共定位的现象。在建立的3日龄大鼠缺氧缺血脑白质损伤模型中,磷酸化Src激酶在损伤后3天时(生后6天)表达显著下降(P=0.0007,n=6~7/组)。在损伤后7天(生后10天)、14天(生后17天)时恢复到对照组水平,与对照组间差异无统计学意义(n=3/组)。结论 在正常发育大鼠脑中磷酸化Src激酶的活化表达有时间节律,而在HI损伤后磷酸化Src激酶表达减少。
关键词Src激酶    少突胶质细胞    早产儿脑白质损伤    缺氧缺血(HI)    
Expressions of Src kinases in normal developing brain and immature brains with hypoxic-ischemic white matter injury of rats
QIU Han1,2 , QIAN Tian-yang1,2 , WU Tong1,2 , WANG Lai-shuan1,2     
1. Department of Neonatology, National Children's Medical Center/Children's Hospital, Fudan University;
2. National Health Commisson Key Laboratory of Neonatal Diseases(Fudan University), Shanghai 201102, China
Abstract: Objective To investigate the expressions of phosphorylated Src kinase in normal developing brains and immature brains with hypoxic-ischemic white matter injury of rats. Methods Three-day-old Sprague-Dawley rat pups were subjected to right carotid artery ligation, followed by 2.5 h of hypoxia (6% oxygen). The neuropathological changes were observed by hematoxylin-eosin (HE)staining, Western blot and immunofluorescence. Brain tissues were collected from control and hypoxia-ischemia (HI) group rats at postnatal day 6, 10 and 17. Expression of phosphorylated Src was evaluated by Western blot and immunofluorescence.The relationship of phosphorylated Src kinases and oligodendrocytes (OLs) was evaluated by triple immunofluorescence staining. Results In the control group, the expression of phosphorylated Src kinases peaked at 6 and 10 days after birth.Phosphorylated Src kinases was predominantly present in mature OLs, which was rarely observed in oligodendrocyte precursor cells.In the 3-day rat hypoxic-ischemic white matter injury model, phosphorylated Src kinases decreased significantly 3 days after injury (6 days after birth) (P=0.0007, n=6-7 for each group).At 7 days after injury (10 days after birth) and 14 days (17 days after birth) after injury, phosphorylated Src kinases returned to the level of control group, and there was no statistically significant difference between control group and HI group (n=3 for each group). Conclusion In normal developing brains of rats, the expression of phosphorylated Src kinases has a time rhythm and decreases after HI injury.
Key words: Src kinases    oligodendrocyte    preterm white matter injury    hypoxia-ischemia (HI)    

早产是一个全球性的公共卫生问题,全球每年每10个新生儿中就有一个早产(胎龄 < 37周)[1-2]。随着围产新生儿救治水平的提高,早产儿的存活率越来越高[3],但伴随着较高的脑损伤风险。据统计,约有25%~50%的早产儿在运动、视觉、认知等方面存在发育障碍[4]。而早产儿脑损伤的主要形式是早产儿脑白质损伤(preterm white matter injury,PWMI)[5],约42.5%的脑瘫患儿患有PWMI[6]

PWMI主要的上游启动损伤是缺氧缺血(hypoxia-ischemia,HI)或/和炎症反应,受累的主要靶细胞是少突胶质前体细胞(oligodendrocyte precursor cell,OPC)[7]。OPC富含铁、脂质,氧化代谢率高,极易受到HI、炎症等损伤的侵害[8]。损伤后,再生的OPC分化为成熟少突胶质细胞(oligodendrocyte,OL),但难以形成髓鞘,最终导致髓鞘形成减少,影响沿轴突的快速传导[9]

关于损伤后OL成髓鞘障碍的原因尚不清楚。OL的成熟、成髓鞘受到多种转录因子的调控。而Src家族激酶具有细胞增殖、促进神经元分化和轴突生长等作用[10-11]。作为非受体酪氨酸激酶,Src家族激酶包含Src、Fyn、Yes、Lck、Lyn和c-Src等,其中Src、Fyn、Yes、Lck和Lyn已在哺乳动物的大脑中检测到[12],而发育期大脑已检测到Src、Fyn和Yes[13]。研究表明Src家族激酶对OL的分化成髓鞘有至关重要的作用[14]。研究显示,敲除Fyn激酶将会导致小鼠髓鞘生成明显减少[15-16]。一项体外研究显示,磷酸化c-Src的瞬时升高对于人神经干细胞诱导分化成OPC至关重要[17]。虽然下游的机制各不相同,但Src家族激酶具有相同的结构域,主要通过构建开放构象,使tyr 416位点磷酸化,从而产生活性[18]。但在PWMI中,对磷酸化Src激酶的改变知之甚少。

在本研究中,我们在正常发育的大鼠中测定磷酸化Src激酶的表达,并明确其共定位细胞;对出生3天的SD大鼠进行HI处理,构建大鼠缺氧缺血性脑白质损伤模型,在模型鼠中测定磷酸化Src激酶的改变,以期为PWMI的治疗提供理论基础。

材料和方法

动物模型   SD大鼠购自上海西普尔-必凯公司,饲养于复旦大学上海医学院实验动物部。动物实验通过复旦大学附属儿科医院伦理委员会批准[批准号: 复儿伦审(2020)515号]。每窝大鼠根据体质量配平,随机分为2组,分别为对照组和HI组,每组3~7只,共计46只。HI组SD大鼠出生3天后结扎右侧颈总动脉,并使用6%氧气缺氧2.5 h,建立大鼠缺氧缺血性脑白质损伤模型。同窝对照组大鼠仅进行分离动脉的假手术,并未结扎和缺氧。

蛋白免疫印迹(Western blotWB)    在出生后6、10、17天(P6、P10、P17)处死大鼠,快速取出脑组织置于冰上,冠状位切片,每片厚度2 mm,根据脑图谱定位切取并收集胼胝体组织,或直接收取右侧半脑。将取得的脑组织加入RIPA裂解液和蛋白酶磷酸酶抑制剂(美国Thermo公司),研磨彻底,12 000×g离心提取蛋白裂解液上清。使用BCA蛋白检测试剂盒(上海碧云天生物技术有限公司)测定蛋白质浓度。将等量蛋白质加到SDS-PAGE胶上分离,再转至硝化纤维素滤膜上。使用5%牛血清室温下封闭1 h,在4 ℃下与以下一抗杂交过夜: 髓鞘碱性蛋白(myelin basic protein,MBP)(1:1 000,美国Biolegend公司),β-actin (1:5 000,爱必信(上海)生物科技有限公司),Src [pY416](1:1 000)和Src(1:1 000)(美国CST公司)。第二天与HRP酶标二抗[1:5 000,爱必信(上海)生物科技有限公司]在室温下孵育1 h后显影。

组织学检查及苏木精-伊红(HE)染色    用20%乌拉坦麻醉大鼠,灌注预冷的生理盐水,再灌注预冷的4%多聚甲醛,取下全脑组织放于4%多聚甲醛中,4 ℃下固定过夜。使用20%和30%的蔗糖梯度脱水。采用冰冻切片机(CM1950,德国莱卡公司)冠状切片,厚度约35 μm。采用HE染色,用光学显微镜(SZX7,日本奥林巴斯公司)分析。

免疫荧光染色   切片使用0.1% Triton X-100渗透,5%牛血清白蛋白封闭。使用一抗MBP(1:200,美国Biolegend公司)、PDGFRα(1:200,美国BD Pharmingen™公司),CC-1(1:100,美国Calbiochem公司),Src [pY416](1:100,美国CST公司)在4 ℃下孵育过夜,第二天再使用配对荧光偶联二抗(1:500,美国Alexa Fluor公司)室温下孵育。采用DAPI(武汉塞维尔生物科技有限公司)检测细胞核荧光信号。使用共聚焦荧光显微镜(TCS-SP8,德国莱卡公司)观察。

统计分析    使用Image J软件分析WB条带的灰度值和免疫荧光强度。所有数据均采用x±s表示。用Graphpad Prism 6.0软件进行统计分析。多组间比较采用单因素方差分析和Bonferroni法进行两两比较分析。两组间比较采用独立样本t检验分析。P < 0.05为差异有统计学意义。

结果

胼胝体区磷酸化Src激酶的多时间表达  已有研究证明在脑中磷酸化的Src激酶对于OL具有调节髓鞘形成的作用[15, 19]。为了确定磷酸化的Src激酶在脑内促进髓鞘形成的作用,我们首先使用WB评估大脑内胼胝体中磷酸化Src激酶的表达。结果显示胼胝体区域磷酸化Src激酶表达在P6、P10时处于高水平,而在P17天时磷酸化Src激酶的表达显著下降(图 1A1B),三组表达不全相等(F=7.446,P=0.024)。P6时磷酸化Src激酶的表达显著高于P17天(图 1B)。这与OL成髓鞘的时间段相一致[20]。为了进一步验证这一结论,我们使用磷酸化Src激酶(tyr416)进行荧光染色,可见P6、P10时的磷酸化Src荧光强度较强,而P17天的磷酸化Src荧光明显减少(F=6.960,P=0.027)(图 1C1D)。这与WB结果相一致。

P6, P10, P17:Postnatal day 6, 10, 17.A: Western blot images of phospho-Src (p-Src), total Src and actin.B: Quantification of p-Src/total Src (n=3 for each group).C: Quantification of the density of p-Src at different time points (n=3 for each group).D: Immunofluorescence of p-Src in corpus callosum region.(1) P < 0.05. 图 1 胼胝体区磷酸化Src激酶多时间表达 Fig 1 Expression of phosphorylation of Src kinases in corpus callosum region at different times

发育期间磷酸化Src激酶的OL来源  OL发育成熟有4个阶段: OPC、晚期OPC、髓鞘化前少突胶质细胞和髓鞘化少突胶质细胞[9]。标记物PDGFRα在OPC和晚期OPC(即未成熟OL)中表达,而CC-1标记物则在髓鞘化前少突胶质细胞和髓鞘化少突胶质细胞(即成熟OL)中表达[21]。因此为了进一步明确Src激酶在不同发育期OL的表达特点,我们使用PDGFRα,CC-1和磷酸化Src(tyr416)进行了三重免疫荧光染色,对P6、P10的时间点进行分析。P6、P10时,可见少量PDGFRα+的OPC,而CC-1+的OL遍布脑片。大部分磷酸化Src+的细胞与CC-1+的成熟OL共定位(图 2A2B)。表明Src激酶活化主要与CC-1+的成熟OL共定位,对成熟OL以及之后的髓鞘形成有关键影响。

A: Immunofluorescence of p-Src, CC-1 and PDGFRα on 3 days post injury in corpus callosum region (A) and on 7 days post injury in cortex region (B).Arrows point to cells co-located with CC-1+ and p-Src+. 图 2 磷酸化Src激酶与少突胶质细胞共染 Fig 2 Phosphorylated Src kinases co-stained with oligodendrocytes

3日龄大鼠缺氧缺血性脑白质损伤模型的建立    为了研究PWMI中磷酸化Src激酶表达的改变,我们首先建立了3日龄大鼠缺氧缺血性脑白质损伤的模型。造模后14天(即P17)时,可见HI组的损伤侧半脑较对照组右脑稍萎缩(图 3A)。通过HE染色发现,造模后14天,HI组损伤侧胼胝体变薄,神经纤维排列紊乱、稀疏(图 3B)。WB结果显示,造模后14天HI组损伤侧胼胝体的MBP较对照组表达明显减少(t=4.417,P=0.002)(图 3C3D)。我们在HI损伤后14天对脑片进行MBP免疫荧光染色,发现其结果与WB结果一致,HI组的MBP荧光强度明显降低(t=3.451,P=0.014)(图 3E3F)。以上结果提示PWMI动物模型成功建立。

A: General view of brain on 14 days post injury.B: Hematoxylin and eosin staining on 14 days post injury (upper×100, lower×400).C: Western blot images of MBP on 14 days post injury in corpus callosum region.D: Quantification of MBP on 14 days post injury (n=4-6 for each group), E: Quantification of the density of MBP on 14 days post injury (n=3 for each group).F: Immunofluorescence images of MBP on the right side on 14 days post injury vs. control.(1) P < 0.01; (2)P < 0.05 图 3 3日龄大鼠HI脑白质损伤模型的建立 Fig 3 Establishment of a 3-day-old rat model with HI cerebral white matter injury

Src激酶活化在3日龄大鼠缺氧缺血性脑白质损伤模型中的改变    为了探索HI损伤后Src激酶活化的改变,WB结果显示造模后3天(P6)时,HI组磷酸化Src的表达较对照组显著减少(图 4A),差异有统计学意义(t=4.629,P=0.000 7)(图 4D),而总Src蛋白保持不变。在造模后7天(P10)(图 4B)和造模后14天(P17)(图 4C)时,两组间差异无统计学意义(图 4E4F)。我们又使用免疫荧光染色对造模后3天的脑片进行分析。图片显示的结果与造模后3天的WB结果一致,HI组磷酸化Src的荧光表达减少(t=7.075,P=0.002)(图 4G4H)。

Western blot images of p-Src and total Src on 3 days post injury (A), 7 days post injury (B) and 14 days post injury (C).Quantification of p-Src/total Src on 3 days post injury (D, n=6-7 for each group), 7 days post injury (E, n=3 for each group) and 14 days post injury (F, n=3 for each group).G: Immunofluorescence of p-Src on 3 days post injury.H: Intensity of p-Src on 3 days post injury (n=3 for each group). vs. control, (1)P < 0.001, (2) P < 0.01. 图 4 Src激酶活化在3日龄大鼠缺氧缺血性脑白质损伤模型中的表达改变 Fig 4 Expressions of activated Src kinases in the 3-day-old rat hypoxia-ischemic white matter injury model
讨论

本研究首先确定了正常发育大鼠脑中胼胝体区域磷酸化Src激酶随时间变化的趋势,并且将其与OPC和成熟OL共染,发现磷酸化Src激酶主要与CC-1+的细胞共染,这表明Src激酶在脑内活化水平与出生后早期发育期间的髓鞘形成密切相关。然后,我们在建立的3日龄大鼠缺氧缺血脑白质损伤模型中发现,HI损伤会使P6时磷酸化Src激酶的表达明显下降。

Src激酶作为非受体酪氨酸激酶,在脑内广泛表达,参与调控多种途径的信号传导,包括细胞黏附受体、整联蛋白、受体酪氨酸激酶,以及G蛋白偶联受体[22-24]。Src激酶具有调节细胞的形状,迁移和黏附,存活、生长和分化的作用,使其成为多种疾病的重要治疗靶标[25-27]。早在1994年,研究已经发现Src激酶中Fyn在OL髓鞘化的过程中被激活,促进髓鞘形成[28]。在一篇病例报告中表明,Src同源2域含蛋白酪氨酸磷酸酶2的功能启动子变异,与自发性早产本身、白质中髓鞘形成以及神经发育有关,可能导致早产儿的髓鞘发育迟缓和运动发育不良[29]。而在体外实验中,通过培养原代OPC证实了Fyn在分化OPC时上调[30],随后在活跃的成髓细胞发生中下调[31]。本研究中Src激酶在大鼠正常发育脑内活化具有相似的时间节律,其在发育早期达到峰值,而在髓鞘几乎完全形成时迅速下调,且主要存在于成熟OL中,表明该节律可能与OL成髓鞘有重要关联。

磷酸化Src激酶在未成熟脑内对OL成髓鞘的作用已得到证实[20, 31],但在PWMI中磷酸化Src激酶的改变尚不清楚。PWMI是造成早产儿各种神经行为学障碍的重要原因之一,其基本病因涉及大脑发育不成熟,白质区域的选择性脆弱以及炎症、HI损伤等[5, 32]。体外实验表明,缺氧30 min将导致90%的OL在9 h内死亡[33]。HI损伤对于白质的发育可能产生深远的不利影响,HI损伤可以导致脑内信号蛋白和营养素浓度的改变,如减少脑源性神经营养因子,这对于发育中的大脑以及OPC的分化至关重要[34-35]。而在我们建立的3日龄大鼠缺氧缺血性脑白质损伤模型中,发现HI损伤后磷酸化Src激酶表达水平的下降可能影响到OL成髓鞘。以往研究发现,缺乏Src激酶或缺乏Src激酶活性都将导致小鼠体内的髓鞘形成缺陷[15-16]。体外研究发现,在施万细胞和背根神经节共培养物中使用Src激酶抑制剂PP2将导致髓磷脂蛋白的减少,如MBP[36]。提示HI损伤后Src激酶活性的降低可能是导致OL成髓鞘障碍的重要原因之一。

越来越多的研究集中于Src激酶调节OL成髓鞘的机制。一项研究指出磷酸化Src激酶可能通过激活Erk1/2的磷酸化,从而介导脑源性神经营养因子促进OL成髓鞘[20]。另一项研究也显示Src家族激酶参与GABA调节髓鞘形成[37]。在一项体外实验中发现,高浓度的ATP增加了迁移OPC的数量,而BzATP(P2X7受体激动剂)的促进作用强于ATP,其作用可能是通过激活Fyn激酶而产生[38]。这些研究都表明,磷酸化Src激酶对OL成髓鞘的初始阶段起关键作用,并与多种机制有关。而我们的结果显示在HI损伤后磷酸化Src激酶表达水平的下降,可能影响到OL成髓鞘,但其机制尚未可知,有待将来进一步研究,为调控Src激酶增加理论基础。

PWMI后OPC难以形成髓鞘的机制一直尚未明确。本研究探讨了Src激酶活化在OL成髓鞘中扮演的重要角色,发现HI损伤后磷酸化Src激酶表达水平下降,可能是导致OL难以形成髓鞘的重要原因之一。未来我们将聚焦于外源干预Src激酶的活化,为HI损伤导致的PWMI提供治疗策略。

作者贡献声明  邱寒论文构思、撰写和修改,实验操作,数据分析。钱天阳,吴彤   实验操作,数据分析。王来栓  论文构思,综合指导。

利益冲突声明  所有作者均声明不存在利益冲突。

参考文献
[1]
BLENCOWE H, COUSENS S, OESTERGAARD MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications[J]. Lancet, 2012, 379(9832): 2162-2172. [DOI]
[2]
WALANI SR. Global burden of preterm birth[J]. Int J Gynaecol Obstet, 2020, 150(1): 31-33. [DOI]
[3]
STOLL BJ, HANSEN NI, BELL EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012[J]. JAMA, 2015, 314(10): 1039-1051. [DOI]
[4]
BACK SA. White matter injury in the preterm infant: pathology and mechanisms[J]. Acta Neuropathol, 2017, 134(3): 331-349. [DOI]
[5]
VOLPE JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances[J]. Lancet Neurol, 2009, 8(1): 110-124. [DOI]
[6]
BAX M, TYDEMAN C, FLODMARK O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study[J]. JAMA, 2006, 296(13): 1602-1608. [DOI]
[7]
QIU H, QIAN T, WU T, et al. Umbilical cord blood cells for the treatment of preterm white matter injury: Potential effects and treatment options[J]. J Neurosci Res, 2021, 99(3): 778-792. [DOI]
[8]
MIFSUD G, ZAMMIT C, MUSCAT R, et al. Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia[J]. CNS Neurosci Ther, 2014, 20(7): 603-612. [DOI]
[9]
TILBORG EVAN, DE THEIJE CGM, VAN HAL M, et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury[J]. Glia, 2018, 66(2): 221-238. [DOI]
[10]
KUO WL, CHUNG KC, ROSNER MR. Differentiation of central nervous system neuronal cells by fibroblast-derived growth factor requires at least two signaling pathways: roles for Ras and Src[J]. Mol Cell Biol, 1997, 17(8): 4633-4643. [DOI]
[11]
HOFFMAN-KIM D, KERNER JA, CHEN A, et al. pp60(c-src) is a negative regulator of laminin-1-mediated neurite outgrowth in chick sensory neurons[J]. Mol Cell Neurosci, 2002, 21(1): 81-93. [DOI]
[12]
ALI DW, SALTER MW. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity[J]. Curr Opin Neurobiol, 2001, 11(3): 336-342. [DOI]
[13]
STEIN PL, VOGEL H, SORIANO P. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice[J]. Genes Dev, 1994, 8(17): 1999-2007. [DOI]
[14]
MITEW S, HAY CM, PECKHAM H, et al. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin[J]. Neuroscience, 2014, 276: 29-47. [URI]
[15]
GOTO J, TEZUKA T, NAKAZAWA T, et al. Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development[J]. Mol Cell Neurosci, 2008, 38(2): 203-212. [DOI]
[16]
SPERBER BR, BOYLE-WALSH EA, ENGLEKA MJ, et al. A unique role for Fyn in CNS myelination[J]. J Neurosci, 2001, 21(6): 2039-2047. [DOI]
[17]
WANG L, SCHLAGAL CR, GAO J, et al. Oligodendrocyte differentiation from human neural stem cells: A novel role for c-Src[J]. Neurochem Int, 2018, 120: 21-32. [DOI]
[18]
ROSKOSKI R, J R. Src protein-tyrosine kinase structure and regulation[J]. Biochem Biophys Res Commun, 2004, 324(4): 1155-1164. [DOI]
[19]
SPERBER BR, MCMORRIS FA. Fyn tyrosine kinase regulates oligodendroglial cell development but is not required for morphological differentiation of oligodendrocytes[J]. J Neurosci Res, 2001, 63(4): 303-312. [DOI]
[20]
PECKHAM H, GIUFFRIDA L, WOOD R, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination[J]. Glia, 2016, 64(2): 255-269. [DOI]
[21]
BAUMANN N, PHAM-DINH D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001, 81(2): 871-927.
[22]
ABRAM CL, COURTNEIDGE SA. Src family tyrosine kinases and growth factor signaling[J]. Exp Cell Res, 2000, 254(1): 1-13. [DOI]
[23]
PARSONS SJ, PARSONS JT. Src family kinases, key regulators of signal transduction[J]. Oncogene, 2004, 23(48): 7906-7909. [DOI]
[24]
GIANNONE G, SHEETZ MP. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways[J]. Trends Cell Biol, 2006, 16(4): 213-223. [URI]
[25]
CHETTY S, ENGQUIST EN, MEHANNA E, et al. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation[J]. J Cell Biol, 2015, 210(7): 1257-1268. [DOI]
[26]
ZHANG X, SIMERLY C, HARTNETT C, et al. Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells[J]. Stem Cell Res, 2014, 13(3 Pt A): 379-389.
[27]
NYGAARD HB, DYCK CHVAN, STRITTMATTER SM. Fyn kinase inhibition as a novel therapy for Alzheimer's disease[J]. Alzheimers Res Ther, 2014, 6(1): 8. [URI]
[28]
UMEMORI H, SATO S, YAGI T, et al. Initial events of myelination involve Fyn tyrosine kinase signalling[J]. Nature, 1994, 367(6463): 572-576. [URI]
[29]
SHIM SY, JEONG HJ, PARK HJ, et al. Functional variation of SHP-2 promoter is associated with preterm birth and delayed myelination and motor development in preterm infants[J]. Sci Rep, 2017, 7(1): 6052. [URI]
[30]
OSTERHOUT DJ, WOLVEN A, WOLF RM, et al. Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase[J]. J Cell Biol, 1999, 145(6): 1209-1218. [URI]
[31]
KRäMER EM, KLEIN C, KOCH T, et al. Compartmentation of Fyn kinase with glycosylphosphatidy-linositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination[J]. J Biol Chem, 1999, 274(41): 29042-29049. [URI]
[32]
GOPAGONDANAHALLI KR, LI J, FAHEY MC, et al. Preterm hypoxic-ischemic encephalopathy[J]. Front Pediatr, 2016, 4: 114.
[33]
TEKKOK SB, GOLDBERG MP. Ampa/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter[J]. J Neurosci, 2001, 21(12): 4237-4248. [PubMed]
[34]
ELITT CM, ROSENBERG PA. The challenge of understanding cerebral white matter injury in the premature infant[J]. Neuroscience, 2014, 276: 216-238. [URI]
[35]
HUANG J, ZHANG L, QU Y, et al. Histone acetylation of oligodendrocytes protects against white matter injury induced by inflammation and hypoxia-ischemia through activation of BDNF-TrkB signaling pathway in neonatal rats[J]. Brain Res, 2018, 1688: 33-46. [PubMed]
[36]
HOSSAIN S, FRAGOSO G, MUSHYNSKI WE, et al. Regulation of peripheral myelination by Src-like kinases[J]. Exp Neurol, 2010, 226(1): 47-57. [URI]
[37]
SERRANO-REGAL MP, LUENGAS-ESCUZA I, BAYóN-CORDERO L, et al. Oligodendrocyte differentiation and myelination is potentiated via GABA(B) receptor activation[J]. Neuroscience, 2020, 439: 163-180. [PubMed]
[38]
FENG JF, GAO XF, PU YY, et al. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration[J]. Purinergic Signal, 2015, 11(3): 361-369. [DOI]

文章信息

邱寒, 钱天阳, 吴彤, 王来栓
QIU Han, QIAN Tian-yang, WU Tong, WANG Lai-shuan
Src激酶在正常发育和未成熟大鼠缺氧缺血脑白质损伤中的表达变化
Expressions of Src kinases in normal developing brain and immature brains with hypoxic-ischemic white matter injury of rats
复旦学报医学版, 2021, 48(4): 443-450.
Fudan University Journal of Medical Sciences, 2021, 48(4): 443-450.
Corresponding author
WANG Lai-shuan, E-mail: laishuanwang@fudan.edu.cn.
基金项目
国家重点研发计划(2017YFA0104200)
Foundation item
This work was supported by the National Key R & D Program of China (2017YFA0104200)

工作空间