孤独症谱系障碍(autism spectrum disorder,ASD)是一类神经发育障碍性疾病,社交沟通障碍是其核心症状之一[1]。ASD至今尚缺乏特效治疗方法,症状往往伴随患者一生,致残率高。ASD的病因十分复杂,研究表明遗传因素在ASD发病中占主导作用[2-4]。基因的变异(包括染色体重排、拷贝数变异和编码区序列变异)被认为是与ASD遗传因素相关的主要原因[5],突触功能障碍可能是常见的发病机制[6]。越来越多的证据表明,shank3基因的缺陷与ASD之间具有强烈的因果关系[7-8]。研究显示,shank3基因缺陷是ASD最常见的单基因遗传原因之一[9]。作为突触蛋白中的主要支架蛋白,SHANK3蛋白位于兴奋性突触的突触后致密区,对突触的正常发育和功能行使至关重要[10]。
一直以来,shank3基因缺陷患者的治疗是研究热点和难点,传统的治疗手段主要以行为干预训练及教育指导为主,但效果欠佳。近年来,越来越多的研究者致力于探索利用催产素治疗ASD患者的社交缺陷。哺乳动物催产素是一类主要由下丘脑室旁核和视上核合成分泌的神经肽[11],大部分释放到外周血,对机体的生理功能进行调节。部分内源性催产素经神经元纤维投射到下丘脑等中央或边缘神经系统,通过结合膜表面的催产素受体(oxytocin receptor,OXTR)激活胞内G蛋白偶联受体信号通路[12],调节不同的神经回路,进而影响行为的输出。催产素可以通过加强社会记忆、增加社会奖赏机制以及调节社交注意来调节哺乳动物的社交认知和社交行为[13-15]。2015年,Penagarikano等[16]发现连续2周对ASD相关基因cntnap2小鼠模型进行外源性催产素给药(P7~P21),cntnap2小鼠社交行为缺陷的改善持续到P30。这项研究为单基因缺陷相关ASD的药物研究提供了一个新方向。
目前药物的开发和研究主要集中在体外筛选,虽然也能成功筛选到药物,但难以通过体内验证,因此无法创建整个生物体的复杂网络联系。这些局限性在精神和神经类药物中尤为突出和严重,因为大脑活动无法在体外模拟和重塑[17-19]。近年来,斑马鱼被广泛应用于神经发育障碍性疾病的分子遗传学和药物治疗研究[20-21]。研究人员已经建立公认且成熟的斑马鱼行为学(社交、刻板行为、认知等)检测系统[20],因此可以构建ASD斑马鱼模型,并通过成熟的行为学检测系统量化药物治疗后的行为学指标,判断是否改善ASD样行为,从而评估药物疗效。
2019年,Sgritta等[22]报道催产素单剂量治疗shank3b-/-小鼠模型,其社交偏好缺陷和社交互动能力得到短暂的改善。但尚无研究报道催产素长期治疗shank3缺陷动物模型的社交行为缺陷。本课题组在前期工作中已成功构建了shank3ab-/-斑马鱼品系。行为学检测提示,相比于野生型斑马鱼,shank3ab-/-斑马鱼表现出明显的集群能力降低、社交偏好性降低以及重复、刻板游动增加等孤独症样表型[23]。催产素是一类高度保守的神经多肽[24],斑马鱼体内的硬骨鱼催产素-垂体后叶激素运载蛋白与其他物种催产素前体的氨基酸序列高度相似[25]。本研究利用已构建成功的shank3ab-/-斑马鱼模型,进行多种形式的外源性催产素干预实验,观察是否改善ASD的核心症状,为今后催产素应用于临床治疗shank3基因缺陷的ASD患者提供实验基础。
材料和方法实验动物 shank3ab-/-斑马鱼(Tu品系)模型由本课题组的刘春雪博士构建[23]。标准条件饲养野生型(wild-type,WT)斑马鱼和shank3ab-/-斑马鱼:鱼房恒温28.5 ℃,采用与斑马鱼睡眠节律相一致的模拟昼夜交替灯光,即每天14 h(早7点到晚21点)的光照环境和10 h(晚21点到早7点)的黑暗环境。
药物配制及给药处理 催产素多肽序列:NH2-Gly-Leu-Pro-Cys-Asn-Gln-lle-Tyr-Cys-OH。将催产素(CAS no.50-56-6,英国TOCRIS公司)用无菌水溶解到1 mmol/L储备溶液中,配成催产素原液。实验开始前,将催产素原液用生理盐水稀释成5 nmol/L工作液[26]。选取4.5 mpf的斑马鱼雄鱼进行随机分组:WT-sal组,WT注射生理盐水;WT-OXT组,WT注射催产素;shank3ab-/--sal组,shank3ab-/-注射生理盐水;shank3ab-/--OXT组,shank3ab-/-注射催产素。分别进行3种疗程的给药处理:单次、短期及长期。
实时荧光定量PCR 选取受精后第7天(7 dpf)、受精后第1个月(1 mpf、3.5 mpf、4.5 mpf)的WT斑马鱼和shank3ab-/-斑马鱼,收集单次注射催产素并结束行为学实验的WT-sal组、WT-OXT组、shank3ab-/--sal组和shank3ab-/--OXT组斑马鱼,用RNA提取试剂盒(日本Takara公司)提取全脑总RNA,37 ℃连接15 min,逆转录PCR(85 ℃、5 s)后得到cDNA,实时荧光定量PCR(95 ℃变性30 s,循环40次,95 ℃、30 s,60 ℃、30 s扩增)检测斑马鱼脑内oxtr的mRNA水平(表 1)。
Gene | Primer sequence (5’-3’) |
oxtr | F: TCACACCCAAAGCATCCAAA |
R: TCACACCCAAAGCATCCAAA | |
Rpl13α | F: TCTGGAGGACTGTAAGAGGTATGC |
R: AGACGCACAATCTTGAGAGCAG | |
F:Forward; R:Reverse. |
行为学检测 行为学实验均在温度恒定(28.5 ℃)的行为房中进行。2019年5月开始实验,2019年10月结束实验,实验时段在上午8:30到下午3:30。利用本院斑马鱼平台的斑马鱼行为检测和行为学分析系统(viewpoint)输出原始数据(25帧/s),再进行数据分析。
1 vs. 6社交偏好实验(图 1):用透明插板将实验缸(21 cm×10 cm×7.5 cm)平均分成右侧的伙伴区域以及左侧的实验区域两部分。伙伴区域放入6条代表正常伙伴的WT斑马鱼,实验区域放入1条待测的实验鱼,适应15 min后进行30 min的行为学实验录制。数据分析时将实验区域再平均分为伙伴侧(社交区)以及空白区(非社交区)。WT斑马鱼倾向于紧贴伙伴鱼侧(社交区)游动,在伙伴侧游动的距离和总游动距离的比值越接近1,表示社交倾向性越强。计算公式:社交区游动距离的百分比=[社交区游动距离/(社交区游动距离+非社交区游动距离)]×100%。
实验方案 单次给药:尾鳍注射催产素或生理盐水15 min后,进行1 vs. 6社交偏好性实验。短期疗程给药:连续7天尾鳍注射催产素或生理盐水,每天一次,第8天(距上一次注射12 h)进行1 vs.6社交偏好性实验。长期疗程给药:连续14天尾鳍肌肉注射催产素或生理盐水,每天一次,结束注射后1个月即第45天(距上一次注射1个月)进行1 vs. 6社交偏好性实验(图 2)。
统计学处理 所有数据均以x±s表示,使用GraphPad Prism 6软件分析和制图。采用单因素方差分析统计社交偏好性实验的数据,然后进行LSD多重比较检验(WT-sal组和shank3ab-/--sal组,shank3ab-/--sal组和shank3ab-/--OXT组,WT-sal组和WT-OXT组)。单剂量注射后检测斑马鱼脑内oxtr表达,采用单因素方差分析,然后进行LSD多重比较检验。在不同发育阶段,采用成组t检验分析WT斑马鱼和shank3ab-/-斑马鱼脑部oxtr的mRNA表达水平。P < 0.05为差异有统计学意义。
结果外源性催产素单次给药可改善shank3ab-/-斑马鱼的社交缺陷行为 在1 vs. 6社交偏好性实验中,WT-sal组的伙伴侧游动距离比为0.98,shank3ab-/--sal组为0.86,后者在伙伴侧游动的距离比显著下降(0.98±0.015 vs.0.86±0.042,P=0.009),提示shank3ab-/-斑马鱼表现出明显的社交缺陷行为。当给予单次催产素药物干预后15~30 min内,shank3ab-/--sal组在伙伴侧游动距离比为0.86,shank3ab-/--OXT组则为0.96,后者在伙伴侧游动的距离比显著升高(0.96±0.015 vs. 0.86±0.042,P=0.013),社交倾向性明显提高(图 3A)。而WT-sal组(0.98±0.015)和WT-OXT组(0.99±0.004)在伙伴侧游动距离比的差异无统计学意义,表明催产素能改善shank3ab-/-斑马鱼的孤独症社交缺陷表型,但并不影响野生型斑马鱼成鱼的正常社交行为。
单次催产素药物干预后15~45 min内,WT-sal组在伙伴侧游动距离比均值为0.96,shank3ab-/--sal组均值为0.87,后者社交性显著下降(0.96±0.016 vs. 0.87±0.033,P=0.007),有明显的社交缺陷行为。shank3ab-/-催产素组均值为0.91,相较于shank3ab-/-生理盐水组,催产素治疗组的社交倾向性有升高趋势(0.87±0.033 vs. 0.91±0.019,P=0.193),但差异无统计学意义(图 3B)。WT生理盐水组(0.96±0.016)和WT催产素组(0.97 ± 0.016)的伙伴侧游动距离比差异无统计学意义。以上数据表明外源性催产素单剂量治疗即时改善了shank3ab-/-斑马鱼异常的社交偏好行为。
外源性催产素短期疗程给药可短期改善shank3ab-/-斑马鱼的社交缺陷行为 为了增加催产素在斑马鱼体内的浓度,我们连续7天给予斑马鱼成鱼外源性催产素进行周期性治疗,第8天社交偏好性实验发现,shank3ab-/--OXT组伙伴侧游动的距离比均值为0.94,相较于对照的shank3ab-/--sal组(均值0.88),shank3ab-/--OXT组在伙伴侧游动的距离比升高,社交倾向性差异有统计学意义(0.88±0.018 vs. 0.94±0.015,P=0.006)。WT-sal组(0.97±0.007)和WT-OXT组(0.97±0.016)的伙伴侧游动距离比组间差异无统计学意义。因此,外源性催产素短期疗程干预治疗能短期改善shank3缺陷斑马鱼的社交偏好缺陷(图 4)。
外源性催产素长期疗程干预治疗不能长期改善shank3ab-/-异常的社交缺陷行为 给予斑马鱼成鱼连续14天催产素治疗,1个月后(Day45)进行社交偏好性实验,shank3ab-/--OXT组(均值0.89)相较shank3ab-/--sal组(均值0.93)有倾向于伙伴侧游动的趋势,但差异无统计学意义(0.89±0.031 vs. 0.93±0.020,P=0.213,图 5)。因此,外源性催产素长期疗程治疗不能长期改善shank3缺陷斑马鱼异常的社交偏好性行为。
催产素干预shank3ab-/-斑马鱼的oxtr基因表达 为了分析外源性催产素治疗能够改善shank3ab-/-斑马鱼社交偏好缺陷的机制,我们通过荧光定量PCR实验检测斑马鱼脑组织中oxtr基因的mRNA水平。
首先,检测斑马鱼脑组织中oxtr在不同时间点的表达水平。WT斑马鱼和shank3ab-/-斑马鱼在7 dpf、1 mpf、3.5 mpf以及4.5 mpf这4个典型的发育时间段,oxtr转录表达水平呈逐渐上升趋势,且两组间表达水平差异无统计学意义(图 6A)。
其次,检测催产素单次治疗组和生理盐水组的WT及shank3ab-/-(均为4.5 mpf)斑马鱼成鱼脑组织内oxtr基因mRNA即时水平,结果显示:相对于WT-sal组,WT-OXT组的oxtr基因mRNA水平显著升高(P < 0.001),而shank3ab-/--OXT干预组相对shank3ab-/--sal组有升高趋势,但差异无统计学意义(图 6B)。综上所述,外源性催产素干预会引起斑马鱼oxtr基因mRNA水平的即时上升。
讨论本研究表明外源性催产素治疗能够改善shank3缺陷动物模型的异常社交偏好性行为,社交缺陷改善的持续时间与给药周期相关。本研究首次发现长期疗程的外源性催产素治疗对shank3ab-/-斑马鱼成鱼的社交缺陷行为没有长期影响,揭示了oxtr在shank3ab-/-斑马鱼脑内的时间表达分布,为今后深入研究催产素治疗shank3缺陷动物模型提供了实验基础。
本研究发现外源性催产素单剂量治疗能够即时改善shank3ab-/-斑马鱼异常的社交偏好性行为。外源性催产素可以通过血脑屏障,到达中枢神经系统。催产素治疗社交缺陷的问题之一是半衰期短,催产素在哺乳动物脑内的半衰期约为20 min[27]。因此单剂量给予shank3ab-/-斑马鱼鱼鳍肌肉注射催产素后30 min内社交缺陷得到改善,注射后45 min时社交缺陷改善不明显。我们推测通过血脑屏障进入中枢神经系统的部分外源性催产素,在注射后45 min时可以有效结合OXTR的催产素浓度已经急剧下降,进而不能对社交行为产生改善。
为了提高催产素在脑内的浓度,本研究对shank3ab-/-斑马鱼进行了持续7天的短期催产素干预后,其社交偏好性行为改善效应延长到给药后12 h,较单剂量注射的改善时长明显增加。然而,持续14天的长期疗程结果显示,长期疗程给药并不能明显改善shank3ab-/-斑马鱼的社交缺陷。我们推测,催产素疗效所致社交偏好缺陷的改善可能随着药物代谢而结束,因而在成年shank3ab-/-斑马鱼上无法观察到远期疗效。
催产素的亲社会影响主要通过OXTR介导[28],本研究检测了7 dpf(幼鱼期)、1 mpf(青少年期)、3.5 mpf(成年早期)以及4.5 mpf(成年期)等4个发育时期WT以及shank3ab-/-斑马鱼脑内oxtr的mRNA水平,发现两者之间无任何差异。我们推测shank3缺陷斑马鱼脑内OXTR未出现异常,因而能与外源性催产素有效结合,进而影响社交缺陷的改善。单剂量催产素干预后,shank3ab-/-斑马鱼脑内oxtr的mRNA水平虽有上升趋势,但差异无统计学意义,而催产素干预后WT斑马鱼脑内oxtr的mRNA水平有显著变化,差异有统计学意义,这两者的差异还需进一步研究。
最新研究表明Shank3缺陷影响稳态可塑性,稳态可塑性作为神经可塑性的主要形式之一,外界环境变化时神经系统维持在一定范围内活动,从而维持脑功能相对于外界环境变化时的稳定[29]。下丘脑分泌的神经肽催产素是介导跨感知觉模态可塑性的关键分子,触觉剥夺后的小鼠给予催产素改善初级躯体感觉皮层可塑性的同时,也改善了初级视觉皮层的发育,继而维持感知觉神经网络的稳定性[30]。shank3基因缺陷人群有严重的感知觉异常[31]。靶向敲除外周躯体感觉神经元shank3基因的小鼠,除表现出严重的感知觉异常,也出现严重的社交缺陷,经药物干预后均有所改善[32]。因此,我们推测催产素可能通过改善shank3基因缺陷受损的感知觉稳态可塑性,从而改善shank3缺陷斑马鱼的社交缺陷。
本研究主要研究催产素干预成鱼的疗效,只检测了oxtr基因的mRNA水平,对其他的可能分子机制未进行分析。后期研究可针对斑马鱼发育早期(即神经发育早期)进行外源性催产素的药物干预,以期获得更显著的改善作用和远期疗效。
作者贡献声明 王怡 研究构思,数据采集,论文撰写和修订。刘春雪 论文修订,构建模型。胡纯纯,徐秀 论文修订。
利益冲突声明 所有作者均声明不存在利益冲突。
[1] |
ASSOCIATION AP. Diagnostic and statistical manual of mental disorders[M]. 5th ed. Washington, DC: American Psychiatric Association, 2013.
|
[2] |
RONALD A, HAPPE F, PLOMIN R. A twin study investigating the genetic and environmental aetiologies of parent, teacher and child ratings of autistic-like traits and their overlap[J]. Eur Child Adolesc Psychiatry, 2008, 17(8): 473-483.
[DOI]
|
[3] |
SKUSE DH, MANDY WP, SCOURFIELD J. Measuring autistic traits:heritability, reliability and validity of the social and communication disorders checklist[J]. Br J Psychiatry, 2005, 187: 568-572.
[DOI]
|
[4] |
BAI D, YIP B, WINDHAM GC, et al. Association of genetic and environmental factors with autism in a 5-country cohort[J]. JAMA Psychiatry, 2019, 76(10): 1035-1043.
[DOI]
|
[5] |
ROSTI RO, SADEK AA, VAUX KK, et al. The genetic landscape of autism spectrum disorders[J]. Dev Med Child Neurol, 2014, 56(1): 12-18.
[DOI]
|
[6] |
DE RUBEIS S, HE X, GOLDBERG AP, et al. Synaptic, transcriptional and chromatin genes disrupted in autism[J]. Nature, 2014, 515(7526): 209-215.
[DOI]
|
[7] |
DURAND CM, PERROY J, LOLL F, et al. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism[J]. Mol Psychiatr, 2011, 17(1): 71-84.
|
[8] |
ZHU L, WANG X, LI XL, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders[J]. Hum Mol Genet, 2014, 23(6): 1563-1578.
[DOI]
|
[9] |
DURAND CM, BETANCUR C, BOECKERS TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders[J]. Nat Genet, 2007, 39(1): 25-27.
[DOI]
|
[10] |
MONTEIRO P, FENG G. SHANK proteins:roles at the synapse and in autism spectrum disorder[J]. Nat Rev Neurosci, 2017, 18(3): 147-157.
|
[11] |
RUAN C, ZHANG Z. Laboratory domestication changed the expression patterns of oxytocin and vasopressin in brains of rats and mice[J]. Anat Sci Int, 2016, 91(4): 358-370.
[DOI]
|
[12] |
HAMMOCK E, LEVITT P. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse[J]. Front Behav Neurosci, 2013, 7: 195.
|
[13] |
ENGELMANN M, EBNER K, WOTJAK CT, et al. Endogenous oxytocin is involved in short-term olfactory memory in female rats[J]. Behav Brain Res, 1998, 90(1): 89-94.
[DOI]
|
[14] |
WINSLOW JT, INSEL TR. The social deficits of the oxytocin knockout mouse[J]. Neuropeptides, 2002, 36(2-3): 221-229.
[DOI]
|
[15] |
FERGUSON JN, YOUNG LJ, HEARN EF, et al. Social amnesia in mice lacking the oxytocin gene[J]. Nat Genet, 2000, 25(3): 284-288.
[DOI]
|
[16] |
PENAGARIKANO O, LAZARO MT, LU XH, et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism[J]. Sci Transl Med, 2015, 7(271): 271r-278r.
|
[17] |
RIHEL J, PROBER DA, ARVANITES A, et al. Zebrafish behavioral profiling links drugsto biological targets and rest/wake regulation[J]. Science, 2010, 327(5963): 348-351.
[DOI]
|
[18] |
AGID Y, BUZSAKI G, DIAMOND DM, et al. How can drug discovery for psychiatric disorders be improved?[J]. Nat Rev Drug Discov, 2007, 6(3): 189-201.
[DOI]
|
[19] |
PANGALOS MN, SCHECHTER LE, HURKO O. Drug development for CNS disorders:strategies for balancing risk and reducing attrition[J]. Nat Rev Drug Discov, 2007, 6(7): 521-532.
[DOI]
|
[20] |
MATHUR P, GUO S. Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes[J]. Neurobiol Dis, 2010, 40(1): 66-72.
[DOI]
|
[21] |
STEENBERGEN PJ, RICHARDSON MK, CHAMPAGNE DL. The use of the zebrafish model in stress research[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(6): 1432-1451.
[DOI]
|
[22] |
SGRITTA M, DOOLING SW, BUFFINGTON SA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder[J]. Neuron, 2019, 101(2): 246-259.
[DOI]
|
[23] |
刘春雪.SHANK3基因缺陷和孤独症谱系障碍相关性研究及分子机制的初探[D].复旦大学, 2017.
|
[24] |
UNGER JL, GLASGOW E. Expression of isotocin-neurophysin mRNA in developing zebrafish[J]. Gene Expr Patterns, 2003, 3(1): 105-108.
[DOI]
|
[25] |
HERGET U, WOLF A, WULLIMANN MF, et al. Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae[J]. J Comp Neurol, 2014, 522(7): 1542-1564.
[DOI]
|
[26] |
ZIMMERMANN FF, GASPARY KV, SIEBEL AM, et al. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish[J]. Behav Brain Res, 2016, 311: 368-374.
[DOI]
|
[27] |
LUDWIG M, LENG G. Dendritic peptide release and peptide-dependent behaviours[J]. Nat Rev Neurosci, 2006, 7(2): 126-136.
[DOI]
|
[28] |
KOSHIMIZU TA, NAKAMURA K, EGASHIRA N, et al. Vasopressin V1a and V1b receptors:from molecules to physiological systems[J]. Phyiol Rev, 2012, 92(4): 1813-1864.
|
[29] |
TATAVARTY V, PACHECO AT, KUHNLE CG, et al. Autism-associated Shank3 is essential for homeostatic compensation in rodent V1[J]. Neuron, 2020, 106(5): 769-777.
[DOI]
|
[30] |
ZHENG JJ, LI SJ, ZHANG XD, et al. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices[J]. Nat Neurosci, 2014, 17(3): 391-399.
[DOI]
|
[31] |
PHELAN K, MCDERMID HE. The 22q13.3 deletion syndrome (Phelan-McDermid Syndrome)[J]. Mol Syndromol, 2012, 2(3-5): 186-201.
|
[32] |
OREFICE LL, MOSKO JR, MORENCY DT, et al. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models[J]. Cell, 2019, 178(4): 867-886.
[DOI]
|