文章快速检索     高级检索
   复旦学报(医学版)  2019, Vol. 46 Issue (6): 824-828      DOI: 10.3969/j.issn.1672-8467.2019.06.018
0
Contents            PDF            Abstract             Full text             Fig/Tab
Sox9对软骨细胞分化和基质产生的调控机制
陈臻浩  (综述), 赵广雷 , 石晶晟 , 蒋励 , 夏军  (审校)     
复旦大学附属华山医院骨科 上海 200040
摘要:Y染色体性别决定区(sex-determing region of Y chromosome,SRY)-盒转录因子9(SRY-box transcription factor 9,Sox9)在软骨细胞分化中起关键作用并参与软骨多个分化阶段的调控。在软骨细胞分化过程中Sox9通过翻译后修饰,调节其他细胞因子水平,招募转录复合物的成分和介体复合物的亚基来调控软骨标志基因表达从而影响软骨形成进程。表观遗传也是软骨细胞分化的主要调控机制之一,通过Sox9调节组蛋白修饰以及微小RNA对Sox9表达的调节来调控软骨细胞分化。本文对近20年来Sox9调控软骨发育的开创性研究进行综述。
关键词成软骨分化    Sox9    调控机制    表观遗传学    
Regulation mechanism of Sox9 on chondrocyte differentiation and matrix production
CHEN Zhen-hao , ZHAO Guang-lei , SHI Jing-sheng , JIANG Li , XIA Jun     
Department of Orthropaedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
Abstract: Sex-determing region of Y chromosome (SRY)-box transcription factor 9 (Sox9) plays a crucial role in chondrocyte differentiation and is involved in the regulation of multiple stages of chondrocyte specification and differentiation.During chondrocyte differentiation, Sox9 influences cartilage formation through posttranslational modifications, modulation of other cytokines, recruitment of components of the general transcriptional machinery and subunits of the mediator complex to regulate chondrocyte marker genes expression.In addition, epigenetics is also one of the major regulatory mechanisms of chondrocyte differentiation.Sox9 regulates chondrocyte differentiation mainly through the regulation of histone modification and the regulation of Sox9 expression by microRNAs.In this review, we recall the history of seminal discoveries that have led in the past two decades to our current understanding of Sox9 in the transcriptional regulation of chondrogenesis.
Key words: chondrogenesis    Sox9    regulatory mechanism    epigenetics    

软骨是脊椎动物独特和重要的组织。在青少年期, 软骨组织作为软骨内成骨的模板不断生成骨组织; 在成年期, 软骨组织主要留在关节内, 形成骨骼的关节。关节软骨是由软骨细胞、纤维和基质构成的略带弹性的坚韧组织, 起到支持、保护和缓冲作用。很多关节疾病都是由于软骨损伤所造成, 如半月板损伤、退行性关节炎、骨质增生、腰椎间盘突出等。想要对这些疾病进行更深入的理解和探究, 需要进一步澄清软骨细胞分化和基质产生的分子机制。Y染色体性别决定区(sex-determing region of Y chromosome, SRY)-盒转录因子9(SRY-box transcription factor 9, Sox9)在软骨细胞分化调节中极为关键[1-3], 参与软骨多个分化阶段的调控。本文对近20年来Sox9调控软骨发育的研究进行综述。

Sox9在软骨分化中的作用  Sox9最早于1993年在一种性别反转畸形疾病(campomelic dysplasia, CD)的研究中被发现, CD综合征是一种先天性可致死性软骨发育异常综合征[4]Sox9基因是位于Y染色体上SRY基因的同源基因(17q24.3~q25.1), 其编码产物有509个氨基酸多肽[5-6], 是一种与软骨形成、性别分化、神经系统以及心脏发育相关的转录因子。Wagner等[7]和Foster等[8]证实, 人类骨骼形态异常综合征及躯干发育异常是由于Sox9基因内和基因周围的杂合突变造成的。这种常染色体显性疾病在围产期常导致胎儿呼吸窘迫而死亡, 即使出生, 患者常常伴随不成比例的身材矮小、四肢鞠躬、低位耳朵、鼻梁凹陷、马蹄内翻足、长人中和小颌畸形等临床特征。除了骨骼缺陷之外, 这种疾病常伴有XY性反转和心脏等内脏器官的畸形。这一发现引发了后续研究, 以探究Sox9在骨骼发生和其他组织发育过程中的作用。

Sox9是调控软骨分化的主要基因  多项研究表明Sox9是激活软骨细胞的特异性因子, 因此提出了Sox9是软骨形成的主要调节因子, 是软骨形成所必需的。Sox9杂合子缺失的小鼠几乎完全复制了人类躯干发育异常的骨骼异常, 并且像许多相同突变的患者一样, Sox9杂合子缺失的小鼠在出生后不久就死亡[9]。Bi等[10]构造了含Sox9胚胎干细胞, 并用来产生小鼠胚胎嵌合体, 在这些含Sox9胚胎干细胞中用LacZ取代了Sox9编码序列, 以便追踪表达Sox9无效等位基因的突变细胞。研究发现, 在中期胚胎嵌合体的所有骨骼发育间充质中, 这些细胞与野生型细胞相混合, 但在晚期阶段这些细胞没有出现在软骨前体细胞聚集过程和软骨原基内。即便一些细胞簇靠近软骨原基, 也不能表达软骨标记, 如Col2a1、Col11a2和Agc1。Akiyama等[3]在骨骼发生早期使用噬菌体P1的Cre重组酶/loxP重组系统在骨骼发生的早期阶段灭活了小鼠的Sox9基因, 发现在软骨前体细胞聚集之前, 肢芽间质中Sox9的失活会导致间充质细胞聚集异常以及随后的软骨和骨形成阻碍。Sox9可以通过上调细胞骨架组装基因、同型细胞间黏附和对异型细胞排斥的基因(如Sema3cSema3d)来确保软骨前细胞的凝聚和存活[11]。这些研究充分证实Sox9在软骨细胞分化过程中不可或缺。

除了Sox9, Sox5和Sox6基因在软骨细胞分化过程中也起到重要的作用。Smits等[12]和Zhang等[13]研究发现, Sox5和Sox6双无效小鼠易发展成严重、广泛的软骨发育不全, 而Sox5无效或Sox6无效的小鼠出生时只存在轻微骨骼受损。在Sox5和Sox6双突变体中, 即使Sox9表达正常, 软骨细胞也在软骨前细胞聚集阶段被阻滞。新的研究发现Sox6在软骨形成-骨生成的协调中发挥重要作用。以上小鼠的功能丧失和获得性实验证明, Sox9、Sox5和Sox6形成的转录因子三重组在软骨形成中起决定性作用[10, 13-14]

Sox9不仅是有效的转录激活因子, 还可抑制非必需基因, 如Runt相关转录因子2(Runt related transcription factor 2, Runx2)基因。然而, 这些发现仍然存在疑问:迄今为止进行的ChIP-seq研究发现Sox9与活性增强剂和启动子强结合, 而不与转录抑制标记的基因组区域结合, 因此可能是间接机制, 例如Sox9激活转录抑制因子。另一种转录活性假说是:在软骨细胞中, Sox9是先驱因子, 即一种结合浓缩染色质的因子, 并在软骨细胞分化时诱导软骨特异性基因活化所必需的表观遗传修饰[15]。要证明Sox9是决定和维持软骨细胞谱系命运的软骨源性先驱因子, 还需要更多的数据支持。

Sox9依赖的转录机制  Sox9通过抑制Runx2和β-连环蛋白的转录活性来促进软骨细胞分化。在软骨内骨化发生时, 软骨细胞来自与成骨细胞相同的间充质祖细胞。这些被称为骨软骨祖细胞的细胞具有双相性, 可表达Sox9、Runx2和β-连环蛋白。Runx2是决定成骨细胞命运和早期分化的转录因子[13]。β-连环蛋白是Wnt经典途径的转录转导子, 其蛋白质水平在成骨前体细胞中上调, 在软骨前体细胞中下调。在骨软骨祖细胞中β-连环蛋白能促进成骨细胞分化并抑制成软骨细胞分化[16]。Sox9与β-连环蛋白结合并抑制β-连环蛋白的转录活性, 部分是通过诱导β-连环蛋白的降解[17]。Sox9对Runx2发挥显著的抑制作用, 可能通过泛素介导蛋白酶体依赖途径磷酸化依赖途径, 或通过溶酶体来促进Runx2降解[18], 其中SCF家族E3泛素连接酶(E3 ubiquitin protein ligase, Skp2)通过蛋白酶体途径介导Runx2降解。

p300、Smad3、ZNF606、KLF15和DDRGK1等辅助因子可能与Sox9组装成转录复合物[19-23]。这些因子直接或间接与Sox9结合, 在软骨细胞特异性基因上招募Sox9, 并与Sox9配合激活转录。他们的基因丧失突变可以引起软骨发育不良。Tan等[24]和He等[25]通过体内外实验证实, GLI因子作为介导Hedgehog信号传递的锌指蛋白, 在增殖和肥大前软骨细胞中与Sox9有功能上的相互作用; 在向肥大过渡的过程中, JUN和FOSL2形成的激活蛋白1转录复合物与Sox9相互作用; Sox9与FOXA2(forkhead box A2)因子之间的竞争可能在调节包括Col10a1在内的肥大标记物中起决定作用。Scleraxis(Scx)是组织特异性碱性螺旋-环-螺旋(basic helix-loop-helix, bHLH)转录因子, 可调节肌腱和韧带祖细胞的分化。Col2a1的表达受Sox9和Scx的适当转导刺激。Scx与其他bHLH蛋白二聚化的配偶体E47协同增强Sox9依赖性转录。共激活物(p300)在Scx和E47协同作用下, 增加Sox9调节的软骨标志基因活性, 免疫共沉淀分析显示Scx和E47与Sox9和p300形成转录复合物。这些结果表明, Scx和E47可能通过与Sox9相关的转录复合物结合, 并通过与Col2a1启动子上保守的E盒序列相结合, 来调节初期软骨形成[26]

Sox9还招募介体复合体, 并将其与转录起始位点RNA聚合酶Ⅱ周围的一般转录装置连接起来。Nakamura等[27]证明Sox9、Wwp2和Med25相互作用, 他们是中间介导复合体的组成部分, 是软骨形成中各种因子相互作用的基础。Matrilin-1(Matn1)为软骨基质蛋白, 属于多结构域衔接蛋白家族, 它通过形成胶原依赖和不依赖的细丝并与聚集蛋白聚糖相互作用来促进软骨基质的组装。为揭示软骨特异性基因在生长板中交错表达的机制, Nagy等[28]剖析了驱动Matn1基因表达的转录机制。在Matn1近端启动子进化保守的顺式作用元件限制生长板增殖区和前肥大区的软骨表达。近端元件包括与Sox三重组结合的Pe1元件、结合Nfi蛋白的SI元件和结合Sox三重组及其他因子的启动子Ine元件。Sox5/Sox6与Ine相结合以及Nfi与SI相结合通过蛋白质剂量依赖性方式调节Sox9反式激活。结果表明, Sox招募介体复合体与保守的Matn1近端元件结合并且彼此相互作用, 从而在软骨生长板的特定区域中微调基因表达。后续研究发现[29], 在早期软骨形成中高迁移率族1(high mobility group box 1, Hmgb1)过表达增加了Sox三重组引起的Matn1启动子激活, 且在COS-7细胞中Hmgb1大量表达促进了Sox三重组诱导的Matn1表达。由此证明, Hmgb1有助于Sox三重组募集到Matn1启动子并促进早期软骨发生。

Sox9被确定为软骨形成主要基因之后, 大量研究进一步揭示Sox9在软骨形成中的具体机制。研究显示Sox9蛋白的翻译后修饰, 包括磷酸化, 乙酰化和SUMO化, 在软骨形成中影响Sox9依赖性转录。Rho激酶与Sox9相互作用并直接在丝氨酸181处磷酸化[30], 而转化生长因子-β(transforming growth factor-β, TGF-β)增加Sox9丝氨酸211处磷酸化[31]。这种修饰引起了Sox9的核积累, 提高了Sox9与DNA结合的效率, 增加了转录活性。Sox9蛋白也被活化的STAT1蛋白抑制剂(protein inhibitor of activated STAT 1, PIAS1)修饰, 但PIAS1是抑制还是刺激Sox9活性尚不清楚[32], 需要进一步研究来阐明Sox9翻译后修饰的功能性结果。

这几种Sox蛋白在软骨形成的多个步骤中都是必需的。Sox9维持从祖细胞到肥大软骨细胞的过程, 它与Sox5/Sox6有效地促进软骨细胞分化, 并在生长板软骨细胞成熟过程中与不同的转录因子相互作用。

Sox9相关的表观遗传学调控  表观遗传学被定义为不涉及根本的DNA信息变化的可遗传基因调节。表观遗传也是成软骨分化的主要调控机制之一, 在决定其分化方向上起到重要作用。表观遗传调控包括DNA甲基化、组蛋白修饰、微小RNA调控和染色质重塑等[33]。组蛋白乙酰转移酶分析显示, 包含多个Sox9结合序列的染色质化DNA模板的组蛋白乙酰化在Sox9和p300存在下被激活。E74样因子3(E74 like ETS transcription factor 3, ELF3)通过抑制Sox9-CBP/p300驱动的组蛋白乙酰转移酶活性来调节软骨细胞中Sox9表达, 从而影响软骨细胞基质的产生[34]。该研究表明Sox9相关的共激活物p300在软骨发生的表观遗传学中是必需的。骨形态发生蛋白2(bone morphogenetic protein 2, BMP2)是TGF-β超家族成员之一, 通过增强核因子Y(nuclear factor Y, NF-Y)-p300复合物与Sox9启动子之间的相互作用来刺激Sox9的表达。BMP2还能在染色质的Sox9基因上诱导组蛋白高乙酰化[35]

KDM4B是含有组蛋白脱甲基酶的Jumonji-C结构域, 可选择性使H3K9me3脱甲基至H3K9me1, 同时保持H3K9me2不变[36]。TGF-β诱导的KDM4B从Sox9基因启动子中除去H3K9me3, 从而促进Smad2/3结合到Sox9基因启动子[37]。Hata等[38]将AT丰富的交互区5b(AT rich interactive domain 5B, Arid5b)识别为Sox9的转录共同调控因子。Arid5b将组蛋白赖氨酸脱甲基酶募集到Sox9靶基因的启动子区域, 并刺激这些基因的H3K9me2去甲基化来促进软骨细胞分化。

微小RNA(microRNA)是一类长度为21~25 nt的内源性非编码单链RNA, 可通过碱基互补配对的方式与靶mRNA特异结合, 剪切靶基因的转录产物或抑制其翻译。miRNA-449a对淋巴增强结合因子1具有直接抑制作用, 进而抑制Sox9的表达量[39]。Thompson等[40]发现一种小分子GTP酶(RAS like proto-oncogene A, RALA)是miR-140-5p的新靶点, 在成软骨分化的早期抑制RALA可以导致Sox9表达明显上调。Sox9基因的3’非编码区存在miR-495的结合位点[41], miR-495能直接结合到该位点对Sox9进行负性调节。过度表达miR-495抑制Sox9和软骨特异性细胞外基质表达, 如Ⅱ型胶原、聚集蛋白聚糖和蛋白多糖产物等。Mak等[42]报道了miRNA-145在人软骨肉瘤细胞中表达。miRNA-145与Sox9 RNA的结合可降低Sox9蛋白水平。Wa等[43]通过miRNA阵列分析筛选出miR-30b是TGF-β3诱导的胚胎干细胞成软骨分化的关键负调控因子, 其直接靶向Sox9而起作用。这些研究部分阐明了Sox9在软骨形成中的表观遗传学机制。

结语  Sox9在决定软骨细胞的命运和分化中起着重要作用, 多种因子参与Sox9的转录复合物形成。目前对Sox9与这些因子相互作用的方式和关系仍有很多未知, Sox9在软骨发生过程中的作用谱尚未得到完整解答。Sox9在成为转录激活剂之前是否是一个先驱因子, 它能直接抑制相关基因吗?有关Sox9转录和翻译后调控及其对软骨发生的影响等问题同样没有得到解答。通过CRISPR/Cas介导的基因组编辑等先进技术进一步研究这些问题, 对揭示软骨发育分子机制有重要作用, 并可为软骨退行性疾病中组织再生提供新策略。

参考文献
[1]
JO A, DENDULURI S, ZHANG B, et al. The versatile functions of Sox9 in development, stem cells, and human diseases[J]. Genes Dis, 2014, 1(2): 149-161. [DOI]
[2]
LEFEBVRE VR, DVIR-GINZBERG M. SOX9 and the many facets of its regulation in the chondrocyte lineage[J]. Connect Tissue Res, 2017, 58(1): 2-14. [DOI]
[3]
AKIYAMA H, CHABOISSIER MC, MARTIN JF, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes Dev, 2002, 16(21): 2813-2828. [DOI]
[4]
MOROZUMI K, AINOYA K, TAKEMOTO J, et al. Newly identified t(2;17)(p15;q24.2) chromosomal translocation Is associated with dysgenetic gonads and multiple somatic anomalies[J]. Tohoku J Exp Med, 2018, 245(3): 187-191. [DOI]
[5]
VETRO A, CICCONE R, GIORDA R, et al. XX males SRY negative:a confirmed cause of infertility[J]. J Med Genet, 2011, 48(10): 710-712. [URI]
[6]
CROFT B, OHNESORG T, HEWITT J, et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of Sox9[J]. Nat Commun, 2018, 9(1): 5319.
[7]
WAGNER T, WIRTH J, MEYER J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene Sox9[J]. Cell, 1994, 79(6): 1111-1120. [DOI]
[8]
FOSTER JW, DOMINGUEZSTEGLICH MA, GUIOLI S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene[J]. Nature, 1994, 372(6506): 525-530. [DOI]
[9]
LEFEBVRE V. Roles and regulation of SOX transcription factors in skeletogenesis[J]. Curr Top Dev Biol, 2019, 133: 171-193. [DOI]
[10]
BI W, DENG JM, ZHANG Z, et al. Sox9 is required for cartilage formation[J]. Nat Genet, 1999, 22(1): 85-89. [DOI]
[11]
LIU CF, ANGELOZZI M, HASEEB A, et al. SOX9 is dispensable for the initiation of epigenetic remodeling and the activation of marker genes at the onset of chondrogenesis[J]. Development, 2018, 145(14): dev164459. [DOI]
[12]
SMITS P, LI P, MANDEL J, et al. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation[J]. Dev Cell, 2001, 1(2): 277-290. [DOI]
[13]
ZHANG Y, YANG TL, LI X, et al. Functional analyses reveal the essential role of SOX6 and RUNX2 in the communication of chondrocyte and osteoblast[J]. Osteoporos Int, 2015, 26(2): 553-561. [URI]
[14]
LIU CF, VÉRONIQUE L. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis[J]. Nucleic Acids Res, 2015, 43(17): 8183-8203. [DOI]
[15]
ZARET KS, MANGO SE. Pioneer transcription factors, chromatin dynamics, and cell fate control[J]. Curr Opin Genet Dev, 2016, 37: 76-81. [DOI]
[16]
SHANGGUAN L, NING G, LUO Z, et al. Fibulin-4 reduces extracellular matrix production and suppresses chondrocyte differentiation via DKK1-mediated canonical Wnt/β-catenin signaling[J]. Int J Biol Macromol, 2017, 99: 293-299. [DOI]
[17]
TAKEGAMI Y, OHKAWARA B, ITO M, et al. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification[J]. Biochem Biophys Res Commun, 2016, 473(1): 255-264. [DOI]
[18]
THACKER G, KUMAR Y, KHAN MP, et al. Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2[J]. Biochim Biophys Acta, 2016, 1863(4): 510-519. [DOI]
[19]
ZHOU Z, YU H, WANG Y, et al. ZNF606 interacts with Sox9 to regulate chondrocyte differentiation[J]. Biochem Biophys Res Commun, 2016, 479(4): 920-926. [DOI]
[20]
TSUDA M, TAKAHASHI S, TAKAHASHI Y, et al. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9[J]. J Biol Chem, 2003, 278(29): 27224-27229. [DOI]
[21]
FURUMATSU T, TSUDA M, TANIGUCHI N, et al. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment[J]. J Biol Chem, 2005, 280(9): 8343-8350. [DOI]
[22]
SONG Z, LIAN X, WANG Y, et al. KLF15 regulates in vitro chondrogenic differentiation of human mesenchymal stem cells by targeting SOX9[J]. Biochem Biophys Res Commun, 2017, 493(2): 1082-1088. [DOI]
[23]
EGUNSOLA AT, BAE Y, JIANG MM, et al. Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia[J]. J Clin Invest, 2017, 127(4): 1475-1484. [DOI]
[24]
TAN Z, NIU B, TSANG KY, et al. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions[J]. PLoS Genet, 2018, 14(4): e1007346. [DOI]
[25]
HE X, OHBA S, HOJO H, et al. AP-1 family members act with Sox9 to promote chondrocyte hypertrophy[J]. Development, 2016, 143(16): 3012-3023. [DOI]
[26]
FURUMATSU T, SHUKUNAMI C, AMEMIYA-KUDO M, et al. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription[J]. Int J Biochem Cell Biol, 2010, 42(1): 148-156. [DOI]
[27]
NAKAMURA Y, YAMAMOTO K, HE X, et al. Wwp2 is essential for palatogenesis mediated by the interaction between Sox9 and mediator subunit 25[J]. Nat Commun, 2011, 2(3): 251. [URI]
[28]
NAGY A, KÉNESI E, RENTSENDORJ O, et al. Evolutionarily conserved, growth plate zone-specific regulation of the matrilin-1 promoter:L-Sox5/Sox6 and Nfi factors bound near TATA finely tune activation by Sox9[J]. Mol Cell Biol, 2011, 31(4): 686-699. [DOI]
[29]
SZÉNÁSI T, KÉNESI E, NAGY A, et al. Hmgb1 can facilitate activation of the matrilin-1 gene promoter by Sox9 and L-Sox5/Sox6 in early steps of chondrogenesis[J]. Biochim Biophys Acta, 2013, 1829(10): 1075-1091. [DOI]
[30]
HAUDENSCHILD DR, CHEN JF, PANG N, et al. Rho kinase-dependent activation of SOX9 in chondrocytes[J]. Arthritis Rheum, 2010, 62(1): 191-200. [DOI]
[31]
CORICOR G, SERRA R. TGF-β regulates phosphorylation and stabilization of Sox9 protein in chondrocytes through p38 and Smad dependent mechanisms[J]. Sci Rep, 2016, 6: 38616. [DOI]
[32]
OH HJ, KIDO T, LAU YF. PIAS1 interacts with and represses SOX9 transactivation activity[J]. Mol Reprod Dev, 2007, 74(11): 1446-1455. [DOI]
[33]
GOTTESFELD JM, CAREY MF. Introduction to the thematic minireview series:chromatin and transcription[J]. J Biol Chem, 2018, 293(36): 13775-13777. [DOI]
[34]
OTERO M, PENG H, HACHEM KE, et al. ELF3 modulates type Ⅱ collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity[J]. Connect Tissue Res, 2016, 58(1): 15-26.
[35]
PAN Q, WU Y, LIN T, et al. Bone morphogenetic protein-2 induces chromatin remodeling and modification at the proximal promoter of Sox9 gene[J]. Biochem Biophys Res Commun, 2009, 379(2): 356-361. [DOI]
[36]
WILSON C, KRIEG AJ. KDM4B:a nail for every hammer?[J]. Genes (Basel), 2019, 10(2): 134. [DOI]
[37]
LEE HL, YU B, DENG P, et al. Transforming growth factor-β-induced kdm4b promotes chondrogenic differentiation of human mesenchymal stem cells[J]. Stem Cells, 2016, 34(3): 711-719. [URI]
[38]
HATA K, TAKASHIMA R, AMANO K, et al. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes[J]. Nat Commun, 2013, 4(7): 2850. [PubMed]
[39]
PAIK S, JUNG HS, LEE S, et al. miR-449a regulates the chondrogenesis of human mesenchymal stem cells through direct targeting of lymphoid enhancer-binding factor-1[J]. Stem Cells Dev, 2012, 21(18): 3298-308. [DOI]
[40]
THOMPSON AK, CHEN XY, WOLPAW JR. microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN[J]. Stem Cells Dev, 2014, 23(3): 290-304. [URI]
[41]
LEE S, YOON DS, PAIK S, et al. microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J]. Stem Cells Dev, 2014, 23(15): 1798-1808. [DOI]
[42]
MAK IW, SINGH S, TURCOTTE R, et al. The epigenetic regulation of SOX9 by miR-145 in human chondrosarcoma[J]. J Cell Biochem, 2015, 116(1): 37-44. [URI]
[43]
WA Q, HE P, HUANG S, et al. miR-30b regulates chondrogenic differentiation of mouse embryo-derived stem cells by targeting SOX9[J]. Exp Ther Med, 2017, 14(6): 6131-6137. [PubMed]

文章信息

陈臻浩, 赵广雷, 石晶晟, 蒋励, 夏军
CHEN Zhen-hao, ZHAO Guang-lei, SHI Jing-sheng, JIANG Li, XIA Jun
Sox9对软骨细胞分化和基质产生的调控机制
Regulation mechanism of Sox9 on chondrocyte differentiation and matrix production
复旦学报医学版, 2019, 46(6): 824-828.
Fudan University Journal of Medical Sciences, 2019, 46(6): 824-828.
Corresponding author
XIA Jun, E-mail:hudbt17089@gmail.com.
基金项目
国家自然科学基金青年项目(81601896)
Foundation item
This work was supported by the Youth Program of National Natural Science Foundation of China (81601896)

工作空间