经皮左心耳(left atrial appendage, LAA)封堵术是目前无法长期耐受抗凝药物的非瓣膜性房颤患者预防脑卒中的重要手段之一, 其临床有效性及安全性已在多个多中心RCT研究中被证实[1-4]。以通过镍钛记忆合金骨架覆以聚四氟乙烯膜, 塞入LAA入口, 阻断LAA与左心房间的血流为设计原理的塞式封堵器是目前最常见的LAA封堵器械。但是, 由于LAA形态个体差异性大且腔内复杂梳状肌心耳结构厚薄不均, 选择正确的LAA封堵器型号成为了该术式能否成功至关重要的一个环节, 过大的封堵器会导致LAA穿孔甚至心包填塞, 过小的封堵器会引起器械移位、脱落或残余漏。目前, 塞式封堵器的型号选择主要根据二维经食道超声心动图(transesophageal echocardiogram, TEE)及X线透视下LAA造影测得的LAA最大开口内径作为参考标准, 然而, 单一的平面参数无法准确判断封堵器释放当时立体心耳的解剖结构[5-6]。虽然三维TEE在LAA封堵术的应用不断增大, 但目前能最佳预测封堵器尺寸的术前LAA相关测量参数尚无定论。本研究综合二维TEE, 三维TEE及LAA术中造影所测的LAA开口直径, 并首次通过QLAB10.83DQ软件(新西兰Philips Healthcare Amsterdam公司)对获得的三维TEE影像进行多维平面重建(multiplanar reconstruction, MPR)来测量LAA开口周长, 并通过周长/π得到周长衍生直径(perimeter derived diameter, PDD)评估多种LAA开口参数与最终置入封堵器型号的关系, 以证明三维TEE下LAA周长在指导封堵器型号选择中的意义。
资料和方法研究对象 纳入2018年1-3月于复旦大学附属中山医院接受WATCHMAN (美国波科公司) LAA封堵器置入且完善术中0°、45°、90°、135°二维及三维TEE测量, 并在3D-ZOOM模式下记录单心动周期LAA完整实时图像的非瓣膜性心房颤动患者。
手术过程 所有患者术前1天TEE下评估左心房内有无血栓。手术当日患者于全麻下行经股静脉进行经导管LAA封堵术。成功穿刺房间隔后, 按80 IU/kg给予肝素并实时监测患者激活全血凝固时间(activated clotting time of whole blood, ACT)>250 s。结合术中TEE及X线透视下LAA造影测量的心耳开口大小, 综合考虑选择封堵器型号, 并在TEE及X线透视指导下进行封堵器释放。最终释放封堵器前, 术者需反复进行牵拉试验并在TEE各角度(0°, 45°, 90°, 135°)检测封堵器边缘是否有残余漏及封堵器压缩比是否在8%~20%。患者出院前复查TEE, 确定有无器械脱落、移位及心包积液等手术相关并发症, 并在术后45天、6个月复查TEE, 根据封堵器是否稳定、边缘残余漏、器械相关血栓等事件确定口服抗凝治疗药物方案是否更改。
TEE测量LAA开口 二维TEE:在0°、45°、90°、135°测量LAA开口处直径最大值及最小值, 并计算心耳开口直径平均值。三维TEE:应用QLAB10.8 3DQ软件, 根据LAA矢状面(90°, 图 1A)、冠状面(0°, 图 1B), 将LAA横切面调至到横切矢状面、冠状面的左回旋支(circumflex artery, CX), 然后测量矢状面、冠状面的LAA开口处直径, 再旋转图 1C绿线至45°、135°并测量心耳开口直径的最大值, 最后测量图 1C心耳开口周长, 按周长/π计算出周长相关LAA PDD (图 1D)。
术中X线透视下LAA造影 房间隔穿刺后, 将14F输送鞘沿塑形后的超硬导丝送入左房, 并将6F猪尾巴造影导管经输送鞘送入LAA远端, 测量确定左心房压力>12 mmHg (1 mmHg=0.133 kPa)后分别于RAO20°~30°+CRA20°~30°(图 2A)与RAO30°+CAU20°(图 2B)行LAA造影, 定格于心脏收缩末期, 心耳充盈最大时刻, 测量LAA开口最大、最小直径, 并计算上述两个体位心耳开口平均值。根据WATCHMAN产品指南, 依次对应理论预测封堵器械型号[7](表 1)。
统计学处理 采用SPSS 20.0软件进行统计分析。定量资料采用x±s表示, 定性资料采用频数(百分数)表示。患者LAA参数与实际封堵器选择型号的相关性分析采用Spearman法。将不同测量手段下LAA开口参数(自变量)与相应实际选择WATCHMAN封堵器型号(因变量)分别作线性回分析。双尾P<0.05为差异有统计学意义。
结果47位患者在我院完善术中二维TEE、三维TEE检查后, 接受WATCHMAN经导管LAA封堵术, 并在术后45天、6个月完成全部随访。患者的基线特征见表 2。入组患者年龄为(68.47±9.07)岁, 其中男性患者26人。患者CHA2DS2评分3.77±1.20, HAS-BLED评分2.67±0.96, 所有患者均满足LAA封堵适应证。
Characteristics | Values |
Age (y) | 68.47±9.07 |
Sex (male/female) | 26/21 |
Atrial fibrillation (proximal/permanent) | 32/15 |
Hypertension [n (%)] | 29 (61.70) |
Diabetes mellitus [n (%)] | 7 (14.89) |
Coronary artery disease [n (%)] | 15 (31.91) |
TIA/stroke [n (%)] | 28 (59.57) |
Bleeding history | 8 (17.02) |
CHA2DS2 score | 3.77±1.20 |
HAS-BLED score | 2.67±0.96 |
Heart failure [NYHA≥Ⅲ, n (%)] | 3 (6.38) |
术后随访及并发症 所有患者中2位由于术中多角度造影显示巨大LAA, 开口>35 mm遂未行LAA封堵, 其余45位(95.74%)均成功接受LAA封堵器置入。其中, 32例LAA为菜花型(71.11%), 10例鸡翅型(22.22%), 3例反鸡翅型(6.67%)。围手术期未发生封堵器移位、脱落、心包填塞, 残余漏直径>3 mm等并发症, 2位患者手术结束时心包积液较术前略有增加。至术后6个月随访为止, 所有患者均未出现再发卒中、出血或死亡, 封堵器边缘残余漏直径均小于3 mm, 未发现器械相关血栓(表 3)。
Variables | Values |
Failure rate | 45 (95.74) |
Pericardial effusion | 2 (4.26) |
Pericardial tamponade | 0 |
Device related thrombus | 0 |
Device related displacement/obstacle | 0 |
TIA/Stroke | 0 |
Residual leak (mm) | |
0 | 32 (71.11) |
0.1-1 | 3 (6.67) |
1.1-2 | 7 (15.56) |
2.1-3 | 3 (6.67) |
>3 | 0 |
LAA开口参数与封堵器最终选择型号的相关性分析 二维、三维TEE及X线透视下造影所测LAA开口直径最大值、最小值及PDD参数见表 4。三维TEE下PDD远高于其他方法测得的心耳开口平均直径, 但在测量开口最大值时, PDD与二维TEE参数类似, 均小于LAA术中造影及三维TEE多切面探查所得结果(P<0.001)。
LAA Ostium diameter | Two-dimensional TEE | LAA Angiography | Three-dimensional TEE | PDD | P |
Average | 22.31±3.09 | 23.75±3.19 | 23.03±3.54 | 25.45±3.39(1)(2) | <0.001 |
Maximal | 25.42±3.56 | 27.50±2.50(1) | 27.52±2.51(1) | 25.45±3.39(2) | <0.001 |
(1)vs.Two-dimensional TEE, P<0.05;(2)vs. LAA Angiography, P<0.05. |
45位患者实际使用封堵器型号直径为(29.23±3.46) mm。Spearman分析显示PDD[(25.45±3.39) mm]与最终选择封堵器伞面直径呈极强正相关(r=0.859, P<0.001, 表 5), 二维TEE、三维TEE测得LAA开口最大值与最终选择WATCHMAN封堵器型号相关性不强(r=0.606, 0.634;P<0.001), 术中LAA造影测得心耳开口最大值、平均值与封堵器真实型号相关性较差(r=0.565, 0.543)。按WATCHMAN LAA封堵器型号选择参考说明, 上述测量参数中仅三维TEE下PDD对预测封堵器型号与实际选用器械型号一致性最佳(Kappa=0.778, P<0.001, 表 6)。
Methods | Diameter | Ostium diameter | Spearman’s rho | P |
Two-dimensional TEE | Maximal | 25.42±3.56 | 0.606 | <0.001 |
Average | 22.31±3.09 | 0.552 | <0.001 | |
LAA angiography | Maximal | 27.50±2.50 | 0.565 | <0.001 |
Average | 23.75±3.19 | 0.543 | <0.001 | |
Three-dimensional TEE | Maximal | 27.52±2.51 | 0.634 | <0.001 |
Average | 23.03±3.54 | 0.566 | <0.001 | |
PDD | 25.45±3.39 | 0.859 | <0.001 |
Methods | Diameter | Predicted occluder size | Spearman’s rho | P |
Two-dimensional TEE | Maximal | 30 (21-33) | 0.095 | 0.202 |
Average | 24 (21-30) | -0.032 | 0.592 | |
LAA angiography | Maximal | 30 (24-33) | -0.029 | 0.718 |
Average | 27(21-33) | -0.048 | 0.469 | |
Three-dimensional TEE | Maximal | 30 (24-33) | 0.152 | 0.041 |
Average | 27 (21-33) | -0.003 | 0.723 | |
PDD | 27 (21-33) | 0.778 | 0.000 |
以与实际WATCHMANA封堵器型号大小相关性较好的前30例手术患者的PDD作为预测变量, 封堵器型号的因变量线性回归方程为:WATCHMAN封堵器直径预测值=0.902 9×PDD+6.1012(r2=0.837, P<0.001, 图 3)。根据该回归方程, 对剩下15例患者进行术前封堵器型号预测, 结果显示通过PDD预测封堵器型号的准确率为87%。
讨论LAA是左心房体旁的一个手指状结构, 重叠的心肌混合交叉于心耳的心内膜层及心外膜层构成了一个伴有锯齿状外观的管状盲端, 纵横交错的梳状肌间心耳壁厚度可变, 有时甚至像纸一样薄, 因此, 在经导管LAA封堵术中, 迫切需要准确测量其生理状态下的LAA大小以便选择合适的封堵器型号。若封堵器型号过小, 可能导致无法完全锚定和/或封堵完全, 使LAA封堵术后器械移位、脱落、残余漏事件发生率增加; 若封堵器选择过大, 则可能会引起LAA穿孔, 心包积液甚至心包填塞[8-9]。
目前, 心内科介入医师主要结合X线透视下LAA造影结合术前二维TEE对心耳开口的测量选择相应的封堵器型号[10-11], 但愈来愈多文献向该标准提出质疑[12-13]。二维TEE由于平面限制, 无法立体显现LAA解剖结构, 一旦心脏形态、大小发生变化, 转位后的心脏以经典的0°、45°、90°、135°切面无法真实测量到心耳开口最大切面, 单一的二维平面往往使开口径线相对缩短[14-16]。而术中X线透视下LAA造影由于人为注射造影剂, 增加舒张末期LAA容积, 使所测得的LAA开口最大径较正常心动周期时更大[12], 特别是对于多分叶LAA, 一旦充盈造影剂的分叶无法完全分离, 透视平面下LAA开口即为“重叠”的心耳直径[15-16]。近来三维TEE因其可实现对LAA空间、立体形态的多角度实时动态探查, 在经导管LAA封堵术的应用价值逐渐突出[9], 多项研究显示三维TEE相较二维TEE, 能更准确地提供LAA的真实开口参数, 预测封堵器型号准确率更高[9, 12]。
本研究中, 我们发现二维TEE固定切面探查所得患者LAA开口平均值和最大值均偏小, 而术中造影对LAA开口最大径的测量较3种方法明显偏大, 这与既往国外研究结果相符合。通过进一步分析3种测量方法下LAA开口参数与实际置入的封堵器型号的关系, 我们在国内首次提出, 3D-ZOOM模式下PDD能最准确地预测LAA封堵术中WATCHMAN封堵器的型号, 利用回归方程发现其预测封堵器型号的准确率达87%, 而二维TEE、三维TEE下所测LAA开口最大值与实际选择封堵器型号相关性一般(r=0.606, 0.634), LAA造影测得的开口数值相关性更差。三维TEE可以通过在垂直于LAA的长轴切面获得自回旋支发出的短轴切面, 立体展示心耳入口的正面图像。考虑到真实世界中原始LAA开口椭圆形甚至不规则形多见, 一旦植入自膨胀式的Watchman LAA封堵器, 原本趴于心房表面的LAA入口受内部金属器械的支撑力往往向圆形靠近, 改变形状的心耳入口会引起开口最大值、最小值的显著变化, 但周长往往保持恒定[13, 17]。因此, 依托三维TEE全容积立体图像上得到的LAA解剖学开口周长来判断开口直径可能更好地模拟WATCHMAN LAA封堵器着陆后的类圆形场景, 对指导器械型号的选择有重要意义。
本研究的局限性:虽然对比了3种不同测量手段(二维TEE, 三维TEE, LAA造影)下同一患者的LAA开口参数及其预测封堵器型号与真实使用封堵器大小的相关性, 并引入了三维TEE下PDD参数, 但样本量较小, 且为单中心观察性研究, 相关系数较高的3D-PDD统计结果虽相对较高, 但仍未满足临床实践。PDD对LAA开口大小的评估及对LAA封堵器型号的预测价值仍需多中心、大样本的临床试验验证。
LAA封堵术目前已成为无法长期耐受抗凝药物治疗的非瓣膜性心房颤动患者重要的预防血栓栓塞手段之一。作为LAA封堵术中最重要的一个环节, 如何根据复杂变异的LAA结构选择正确的封堵器型号要求术者必须对心耳开口参数作出最准确的测量。通过三维TEE DICOM数据测量LAA周长有助于更准确地判断封堵器释放时LAA的解剖结构, 对术前预测经皮LAA封堵器型号提供重要参考依据。
[1] |
BOERSMA LV, INCE H, KISCHE S, et al. Efficacy and safety of left atrial appendage closure with WATCHMAN in patients with or without contraindication to oral anticoagulation:1-Year follow-up outcome data of the EWOLUTION trial[J]. Hear Rhythm, 2017, 14(9): 1302-1308.
[DOI]
|
[2] |
SAW J, LEMPEREUR M. Percutaneous left atrial appendage closure procedural techniques and outcomes[J]. JACC Cardiovasc Interv, 2014, 7(11): 1205-1220.
[DOI]
|
[3] |
REDDY VY, HOLMES D, DOSHI SK, et al. Safety of percutaneous left atrial appendage closure:Results from the watchman left atrial appendage system for embolic protection in patients with AF (PROTECT AF) clinical trial and the continued access registry[J]. Circulation, 2011, 123(4): 417-424.
[DOI]
|
[4] |
PHILLIPS KP, POKUSHALOV E, Romanov A, et al. Combining Watchman left atrial appendage closure and catheter ablation for atrial fibrillation:Multicentre registry results of feasibility and safety during implant and 30 days follow-up[J]. Europace, 2018, 20(6): 949-955.
[DOI]
|
[5] |
MEIER B, BLAAUW Y, KHATTAB AA, et al. EHRA/EAPCI expert consensus statement on catheter-based left atrial appendage occlusion[J]. EuroIntervention, 2015, 10(9): 1109-1125.
[DOI]
|
[6] |
BAJAJ NS, PARASHAR A, AGARWAL S, et al. Percutaneous left atrial appendage occlusion for stroke prophylaxis in nonvalvular atrial fibrillation:A systematic review and analysis of observational studies[J]. JACC Cardiovasc Interv, 2014, 7(3): 296-304.
[DOI]
|
[7] |
XU B, BETANCOR J, SATO K, et al. Computed tomography measurement of the left atrial appendage for optimal sizing of the Watchman device[J]. J Cardiovasc Comput Tomogr, 2018, 12(1): 50-55.
[DOI]
|
[8] |
GOITEIN O, FINKi N, HAY I, et al. Cardiac CT Angiography (CCTA) predicts left atrial appendage occluder device size and procedure outcome[J]. Int J Cardiovasc Imaging, 2017, 33(5): 739-747.
[DOI]
|
[9] |
WUNDERLICH NC, BEIGEL R, SWAANS MJ, et al. Percutaneous interventions for left atrial appendage exclusion:Options, assessment, and imaging using 2D and 3D echocardiography[J]. JACC Cardiovasc Imaging, 2015, 8(4): 472-488.
[DOI]
|
[10] |
CHUE CD, GIOVANNI J De, STEEDS RP. The role of echocardiography in percutaneous left atrial appendage occlusion[J]. Eur J Echocardiogr, 2011, 12(10): 3-10.
[DOI]
|
[11] |
张丽紫, 丛涛, 孙颖慧, 等. 经食管实时三维超声心动图在经皮左心耳封堵术中的应用价值[J]. 中国超声医学杂志, 2017, 33(12): 1131-1133. [DOI]
|
[12] |
ALKASSOU B, TZIKAS A, STOCK F, et al. A comparison of two-dimensional and real-time 3D transoesophageal echocardiography and angiography for assessing the left atrial appendage anatomy for sizing a left atrial appendage occlusion system:impact of volume loading[J]. Eurointervention, 2016, 12(17): 2083-2091.
[URI]
|
[13] |
SCHMIDT0SALZMANN M, MEINCKE F, KREIDEL F, et al. Improved algorithm for ostium size assessment in watchman left atrial appendage occlusion using three-dimensional echocardiography[J]. J Invasive Cardiol, 2017, 29(7): 232-238.
[URI]
|
[14] |
YOSEFY C, LAISH-FARKASH A, AZHIBEKOV Y, et al. A new method for direct three-dimensional measurement of left atrial appendage dimensions during transesophageal echocardiography[J]. Echocardiography, 2016, 33(1): 69-76.
[DOI]
|
[15] |
NUCIFOR G, FALETRA FF, REGOLI F, et al. Evaluation of the left atrial appendage with real-time 3-dimensional transesophageal echocardiography implications for catheter-based left atrial appendage closure[J]. Circ Cardiovasc Imaging, 2011, 4(5): 514-523.
[DOI]
|
[16] |
SAW J, FAHMY P, SPENCER R, et al. Comparing measurements of CT angiography, TEE, and fluoroscopy of the left atrial appendage for percutaneous closure[J]. J Cardiovasc Electrophysiol, 2016, 27(4): 414-422.
[DOI]
|
[17] |
邓倾, 加丹, 宋宏宁, 等. 应用TEE数据源的左心耳3D模型开口参数指导LAmbreTM封堵器型号选择[J]. 临床超声医学杂志, 2018, 20(9): 585-589. [DOI]
|