2. 上海市肾病与透析研究所 上海 200032;
3. 上海市肾脏疾病与血液净化重点实验室 上海 200032
2. Kidney and Dialysis Institute of Shanghai, Shanghai 200032, China;
3. Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
肾脏纤维化是肾组织在慢性持续性损伤过程中出现的以肾小球硬化、肾小管萎缩和肾间质纤维化为特点的病理性修复现象[1], 是各种慢性肾脏病进展为终末期肾脏病的共同途径[2], 而目前仍缺乏有效的治疗手段[3]。硫化氢(hydrogen sulfide, H2S)是继NO和CO之后被发现的第3种内源性气体信号分子, 具有抗纤维化、抗衰老、抗炎、抗氧化应激、调节血管活性等多种生物学功能[4]。研究表明肾脏富含合成H2S的关键酶:胱硫醚-β-合酶(cystathionine β-synthase, CBS)和胱硫醚-γ-裂合酶(cystathionine γ-lyase, CSE)[5]。在多种急慢性肾脏损伤后, 肾组织内源性H2S生成减少, 外源性给予H2S可有效减轻肾脏损伤[4]。且H2S对于肾脏纤维化的减轻作用已得到证实[6], 但具体机制仍不清楚。Klotho基因与人类衰老密切相关, 已在多种肾脏纤维化动物模型中证实, 肾脏Klotho低表达参与肾脏纤维化的发生发展[7]。本研究拟通过建立单侧输尿管梗阻(unilateral ureteral obstruction, UUO)小鼠模型, 观察外源性给予H2S是否能通过调控肾组织Klotho表达而减轻肾脏纤维化, 并探索相关机制。
材料和方法实验动物及主要试剂 健康6~8周龄C57BL/6雄性小鼠, 体质量18~23 g, 购自上海灵畅生物科技有限公司, 自由进食饮水。NaHS(美国Sigma公司); 抗Klotho抗体、抗DNA甲基转移酶1 (DNA methyltransferase 1, DNMT1)抗体、抗α平滑肌肌动蛋白(α-smooth muscle actin, α-SMA)抗体、抗GAPDH抗体、抗5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)抗体(Abcam); 抗胱硫醚β合酶(cystathionine-β-synthase, CBS)抗体和抗胱硫醚γ裂合酶(cystathionine-γ-lyase, CSE)抗体(美国Santa Cruz公司); 抗纤连蛋白(fibronectin, FN)抗体(美国Cell Signaling公司); 基因组DNA提取试剂盒(北京天根生化科技有限公司); 甲基化DNA检测试剂盒(北京百奥莱博科技有限公司); Qiagen Pyro Mark PCR试剂盒和PyroGold试剂盒(QIAGEN); 小鼠硫化氢ELISA试剂盒(上海仁捷生物科技有限公司); 核蛋白-胞质蛋白提取试剂盒(Thermo Scientific); 5mC-羟化酶TET活性/抑制分析试剂盒(Epigentek)。
动物模型与实验分组 小鼠适应环境1周后, 随机分为3组:假手术(Sham)组、单侧输尿管梗阻(UUO)组和UUO+硫氢化钠(NaHS)组。将小鼠经背部右侧切口行右侧输尿管结扎并剪断, Sham组仅游离输尿管不进行结扎。实验动物于造模前3天给药, UUO+NaHS组腹腔注射新鲜配制的NaHS溶液112 μg·kg-1·d-1; Sham组和UUO组腹腔注射等体积生理盐水。每日给药, 直至造模后第7天。给药剂量通过文献[6]和预实验结果确定。造模后第7天处死动物, 留取血清和肾组织标本[6]。
血清H2S浓度测定 全血标本经1 000×g离心20 min, 取上清即为血清。根据试剂盒说明, 每个样本取50 μL血清进行ELISA检测。
肾脏病理分析 肾组织置于4%中性甲醛溶液中固定24 h, 常规石蜡包埋, 切片(厚度为4 μm), 行HE和Masson染色。光镜(×200)下观察Masson染色结果, 每只小鼠随机选取10个不重叠视野, 采用ImageJ测定肾小管间质纤维化面积占总面积的百分比。
Western blot检测 提取肾脏组织蛋白后BCA法测蛋白质浓度。取20~50 μg总蛋白, 经6%SDS-PAGE, 湿转至PVDF膜上, PVDF膜用5%脱脂奶粉室温封闭1 h, 一抗4 ℃孵育过夜; TBST洗膜3次, 室温下二抗孵育1 h; ECL发光显影。用ImageJ分析条带灰度值, 以GAPDH作为内参校正。
免疫组织化学染色 肾组织切片经二甲苯脱蜡和乙醇水化后, 微波修复抗原, 10%正常山羊血清封闭, 一抗4 ℃孵育过夜, 加入生物素标记的二抗在37 ℃孵育15 min, DAB显色, 苏木精复染。光镜下(×200)观察肾组织切片, 胞质呈棕黄色为阳性。
RT-PCR检测 向组织匀浆中加入Trizol, 经氯仿、异丙醇分离沉淀RNA, 溶于DEPC水中, 测RNA浓度。取500 ng RNA, 按PrimeScript RT Master Mix试剂盒(TaKaRa)说明进行逆转录, 用SYBR Premix Ex Taq (TaKaRa)进行PCR反应。TET1上游引物:5’-TGAAGATGACAAGCAGC-AAACC-3’, TET1下游引物:5’-TTGTTGAGCG-GAAGGTGTGT-3’; TET2上游引物:5’-GACT-CAACGGTTATCAGGCTTTT-3’, TET2下游引物:5’-CATTGCTCTTTATTCTTCCTCT-GTAA-3’; TET3上游引物:5’-CTCCCCTGCTGTCTTC-AGA-3’, TET3下游引物:5’-CCTGAGGCTCTG-TGGAAGTA-3’。
双加氧酶活性 采用核浆蛋白提取试剂盒提取组织核蛋白并检测浓度。取6 μg核蛋白按照5mC-羟化酶TET活性/抑制分析试剂盒说明操作, 于450和655 nm波长下读取吸光度(D)值, 计算公式:TET活性=(D样品-D空白)×1 000/(6×90)。
焦磷酸测序 根据Klotho启动子区CpG岛位置(-431~-401)设计引物(上游引物:5’-TGG-GAGAGCTCCCTTTGATGGTTT-3’, 下游引物:5’-CCCAAATCAAATTCATTCTCACCTACCTT-T-3’)。测序引物:5’-AGTGAAGAGTAGGTG-3’。按照DNA提取试剂盒说明提取肾组织基因组DNA, 测定DNA浓度, 根据甲基化检测试剂盒说明对DNA进行亚硫酸盐修饰, 未甲基化的胞嘧啶变成尿嘧啶。修饰后的DNA经PCR扩增。根据说明使用PyroMark Q96 MD焦磷酸测序系统对产物进行定量焦磷酸测序。某一位点甲基化率为甲基化胞嘧啶占总胞嘧啶的比例, 结果为启动子区6个CpG位点的平均值。
羟甲基化DNA免疫共沉淀联合实时定量PCR检测 取2 μg肾组织DNA经Bioruptor超声仪(Diagenode)超声破碎为200~1 000 bp, 取10 μL记为内参(input), 剩余DNA中加入5hmC一抗4 ℃孵育过夜; 4 ℃下抗体-DNA结合物与G蛋白磁珠旋转混合过夜, 1×IP缓冲液洗涤3次, 向磁珠中加入蛋白酶K和蛋白酶消化缓冲液, 50 ℃震荡孵育3 h, 即得到羟甲基化产物。以产物与内参为模板, 进行qPCR扩增(结果以%input表示)。取5 μL PCR产物进行琼脂糖凝胶电泳。
统计学分析 数据用x±s表示, 两组数据间采用GraphPad软件进行独立样本t检验, P < 0.05为差异有统计学意义。
结果UUO小鼠血清H2S浓度和肾组织H2S合成关键酶表达的变化 通过ELISA方法对UUO造模后第7天小鼠血清H2S浓度进行检测, 结果显示Sham组和UUO组血清H2S水平分别为(5.18±0.34) nmol/mL和(4.23±0.21) nmol/mL。与Sham组相比, UUO组血清H2S水平显著降低(P=0.032 5, 图 1A)。免疫组化染色结果显示, CBS、CSE主要表达于肾皮质, 梗阻7天后CBS(P=0.002 7)、CSE(P=0.018 0)表达均显著下降(图 1B)。Western blot结果显示, UUO组肾皮质CBS(P=0.000 3)、CSE蛋白表达较Sham组显著降低(P=0.001 5, 图 1C)。
NaHS减轻UUO小鼠肾脏纤维化 对UUO小鼠腹腔注射NaHS (112 μg·kg-1·d-1), 7天后取肾脏组织进行病理染色。HE染色(图 2A)可见UUO组小鼠肾小管扩张, 肾小管上皮细胞萎缩, 肾间质炎症细胞浸润; 外源性给予NaHS后肾小管间质损伤明显减轻。Masson染色(图 2A)结果显示:与Sham组相比, UUO组肾间质纤维化范围明显扩大(P < 0.000 1);与UUO组相比, NaHS组纤维化范围明显减小(P=0.005 9)。免疫组化染色(图 2A)和Western blot(图 2B)均显示:UUO组α-SMA(P分别为0.003 3和0.003 7)和FN(P分别为 < 0.000 1和0.024 1)蛋白质水平表达显著高于Sham组, NaHS治疗后α-SMA(P分别为0.022 4和0.007 9)和FN(P分别为0.039 2和0.045 7)蛋白质表达水平较UUO组显著下调。
NaHS对UUO小鼠肾脏Klotho表达和基因启动子甲基化的影响 免疫组化染色显示:Klotho主要表达于肾皮质, 免疫组化染色(图 3A)和Western blot(图 3B)均显示UUO小鼠梗阻侧肾脏Klotho表达显著低于Sham组(P分别为0.001 4和0.001 9), NaHS组Klotho表达较UUO组显著升高(P分别为0.000 3和0.002 7)。通过焦磷酸测序和hMeDIP-qPCR检测各组Klotho基因启动子区甲基化和羟甲基化水平, 结果显示Sham组、UUO组、NaHS组肾组织Klotho基因甲基化率分别为3.65%±0.26%、11.83%±0.53%和7.39%± 0.70%。与Sham组相比, UUO组Klotho甲基化率显著升高(P < 0.0001);与UUO组相比, NaHS组Klotho甲基化率显著降低(P=0.000 5, 图 3C)。Sham组与UUO组Klotho羟甲基化水平差异无统计学意义, NaHS组Klotho羟甲基化水平显著高于UUO组(P=0.038 7, 图 3D)。
NaHS诱导肾组织Klotho基因启动子去甲基化的机制 Western blot显示UUO组DNMT1表达显著高于Sham组(P < 0.000 1);与UUO组相比NaHS组DNMT1蛋白表达显著下降(P=0.000 3)(图 4A)。RT-PCR结果显示, UUO组TET1、TET2、TET3表达显著高于Sham组(P分别为0.007 6、0.029 3和0.015 2)和NaHS组(P分别为0.047 8、0.018 0和0.018 4, 图 4B)。通过比色法检测肾组织TET活性, Sham组、UUO组和NaHS组肾组织TET活性分别为(1.59±0.39)、(0.03±0.01)和(0.43±0.08) ng·min-1·mg-1。UUO组肾组织TET活性显著低于Sham组(P=0.030 5)和NaHS组(P=0.014 1)(图 4C)。
讨论肾脏纤维化是各种病因引起的急慢性肾损伤进展为终末期肾脏病的共同通路, 其发生发展机制与表观遗传修饰密切相关[8]。H2S可抑制成纤维细胞增殖与肾上皮细胞间充质转分化, 减轻肾脏纤维化, 改善肾功能, 但具体机制仍不清楚。本研究通过建立UUO模型, 证实外源性补充小剂量H2S可通过升高肾组织TET活性诱导Klotho基因启动子羟甲基化, 减轻Klotho基因启动子甲基化而上调Klotho表达, 从而改善UUO小鼠肾脏纤维化。
UUO模型是以肾小管间质纤维化为特点的肾损伤模型。通过对C57BL/6小鼠进行单侧输尿管结扎, 既往研究[9]和本实验均发现小鼠肾小管间质损伤伴有胶原纤维沉积和间质增宽, 证明UUO模型成功。同时我们发现, UUO小鼠血清H2S浓度下降, 肾组织内源性H2S合成关键酶CBS和CSE表达降低。这种现象也在多种肾脏纤维化动物模型中得到证实[6], 还有研究证实CSE基因敲除可加重输尿管梗阻引起的肾脏损伤[10]。既往研究与我们的结果均证实外源性小剂量补充H2S可显著减轻肾脏纤维化[6]。以上研究结果说明肾脏纤维化的发生发展与内源性H2S缺乏密切相关。
Klotho可通过抑制促纤维化相关蛋白表达、RAS系统、TGF-β/Smad通路和Wnt/β-catenin通路等多种机制而发挥其抗肾脏纤维化的作用[11-14]。Klotho缺乏可引起肾脏纤维化, 而Klotho过表达或外源性补充Klotho可减轻肾脏纤维化[15]。DNA甲基化是一种调节基因表达的重要表观遗传方式, 由DNMTs将S-腺苷甲硫氨酸的甲基团转移至胞嘧啶的第5位C原子上, 从而形成5-甲基胞嘧啶, 且启动子区发生甲基化可沉默基因转录[16-17]。Klotho表达与其启动子甲基化状态密切相关, 启动子超甲基化可沉默Klotho表达。既往研究提示肾脏Klotho基因启动子甲基化是肾脏Klotho低表达的重要机制, Klotho基因启动子区的CpG岛可在DNMT1作用下发生甲基化, 沉默Klotho表达而参与肾脏纤维化的发生[18-19]。肾脏纤维化患者和多种肾脏纤维化动物模型肾组织中均发现Klotho启动子超甲基化, 且与肾脏纤维化严重程度呈正相关[19-20]。本研究发现UUO小鼠肾组织Klotho表达明显降低, 同时伴有Klotho基因启动子甲基化水平显著升高, 而补充H2S可升高Klotho基因启动子羟甲基化水平而降低Klotho基因启动子甲基化水平, 同时上调Klotho表达。此结果提示, H2S可通过诱导Klotho基因启动子去甲基化水平而上调Klotho表达, 改善肾脏纤维化。
研究证实, 体细胞中的DNA甲基化是一个可逆的过程, DNA双加氧酶TET蛋白家族能够催化DNA中的5-甲基胞嘧啶氧化成为5-羟甲基胞嘧啶, 从而完成DNA的主动去甲基化过程[21]。文献报道TET1、TET2和TET3在肾脏均有表达[22]。我们推测NaHS可能通过TET依赖的方式调控Klotho基因启动子甲基化水平, 为证明这一推测, 我们检测了各组肾组织TET1、TET2和TET3的表达水平。结果显示UUO组TET1、TET2和TET3表达均显著高于Sham组, 这可能是由于机体为维持体内甲基化和羟甲基化水平相对平衡而出现的代偿性结果, 而补充H2S后并不能上调UUO小鼠肾脏TET1、TET2和TET3的表达。由于TET发挥羟甲基化作用依赖酶的催化活性, 我们检测了各组肾组织TETs活性, 发现虽然UUO小鼠肾组织TETs蛋白质水平上调, 但其活性显著低于Sham组, 因此Klotho羟甲基化水平仍处于较低水平, 而外源性补充H2S后TET活性明显升高, Klotho羟甲基化水平相应显著升高。以上结果说明H2S主要通过调节TET活性而非其表达量调控Klotho基因启动子的甲基化水平。另一方面, 由于H2S可下调UUO小鼠肾脏DNMT1, 减轻Klotho甲基化水平, 因此给予NaHS治疗的UUO小鼠肾脏TET升高不如UUO组明显。
本研究存在一些局限性:(1)由于NaHS是H2S的一种快释放剂, 难以在体内维持长效、稳定的生理浓度, 因此我们使用的NaHS剂量高于文献剂量; 且目前检测体内H2S浓度的方法不同, 检测值也不同, 因此生理性H2S浓度仍需进一步确认。(2)由于肾脏组织成分较为复杂, 大多数文献只观察肾脏组织TET的转录水平表达情况, 我们也仅检测了TET mRNA表达水平。(3)由于缺乏有效的方法检测TET各蛋白质的酶活性, H2S是通过调控哪种或哪几种TET酶活性尚不明确。
综上所述, 本研究证实外源性补充小剂量H2S可通过调节TET活性调控Klotho基因启动子的甲基化水平, 诱导Klotho基因启动子去甲基化, 上调Klotho表达而减轻肾脏纤维化。外源性补充小剂量H2S是一种很有前景的抗肾脏纤维化的治疗手段。关于H2S调控TET活性的机制将在后续的实验中进行深入研究。
[1] |
WEBSTER AC, NAGLER EV, MORTON RL, et al. Chronic kidney disease[J]. Lancet, 2017, 389(10075): 1238-1252.
[DOI]
|
[2] |
NANGAKU M. Chronic hypoxia and tubulointerstitial injury:a final common pathway to end-stage renal failure[J]. J Am Soc Nephrol, 2006, 17(1): 17-25.
[DOI]
|
[3] |
GRAMS ME, CHOW EK, SEGEV DL, et al. Lifetime incidence of CKD stages 3-5 in the United States[J]. Am J Kidney Dis, 2013, 62(2): 245-252.
[DOI]
|
[4] |
KASINATH BS, FELIERS D, LEE HJ. Hydrogen sulfide as a regulatory factor in kidney health and disease[J]. Biochem Pharmacol, 2018, 149: 29-41.
[DOI]
|
[5] |
XIA M, CHEN L, MUH RW, et al. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys[J]. J Pharmacol Exp Ther, 2009, 329(3): 1056-1062.
[DOI]
|
[6] |
SONG K, WANG F, LI Q, et al. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy[J]. Kidney Int, 2014, 85(6): 1318-1329.
[DOI]
|
[7] |
HU MC, KURO-O M, MOE OW. The emerging role of Klotho in clinical nephrology[J]. Nephrol Dial Transplant, 2012, 27(7): 2650-2657.
[DOI]
|
[8] |
LARKIN BP, GLASTRAS SJ, CHEN H, et al. DNA methylation and the potential role of demethylating agents in prevention of progressive chronic kidney disease[J]. FASEB J, 2018, 32(10): 5215-5226.
[DOI]
|
[9] |
JUNG KJ, JANG HS, KIM JI, et al. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction[J]. Biochim Biophys Acta, 2013, 1832(12): 1989-1997.
[DOI]
|
[10] |
HAN SJ, NOH MR, JUNG JM, et al. Hydrogen sulfide-producing cystathionine gamma-lyase is critical in the progression of kidney fibrosis[J]. Free Radic Biol Med, 2017, 112: 423-432.
[DOI]
|
[11] |
GUAN X, NIE L, HE T, et al. Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling[J]. J Pathol, 2014, 234(4): 560-572.
[DOI]
|
[12] |
ZHOU L, MO H, MIAO J, et al. Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system[J]. Am J Pathol, 2015, 185(12): 3211-3223.
[DOI]
|
[13] |
DOI S, ZOU Y, TOGAO O, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice[J]. J Biol Chem, 2011, 286(10): 8655-8665.
[DOI]
|
[14] |
ZHOU L, LI Y, ZHOU D, et al. Loss of Klotho contributes to kidney injury by derepression of Wnt/beta-catenin signaling[J]. J Am Soc Nephrol, 2013, 24(5): 771-785.
[DOI]
|
[15] |
MENCKE R, OLAUSON H, HILLEBRANDS JL. Effects of Klotho on fibrosis and cancer:a renal focus on mechanisms and therapeutic strategies[J]. Adv Drug Deliv Rev, 2017, 121: 85-100.
[DOI]
|
[16] |
JONES PA, BAYLIN SB. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, 2002, 3(6): 415-428.
[DOI]
|
[17] |
LYKO F. The DNA methyltransferase family:a versatile toolkit for epigenetic regulation[J]. Nat Rev Genet, 2018, 19(2): 81-92.
[DOI]
|
[18] |
ROBERTSON KD. DNA methylation and human disease[J]. Nat Rev Genet, 2005, 6(8): 597-610.
[URI]
|
[19] |
CHEN J, ZHANG X, ZHANG H, et al. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease[J]. PLoS One, 2013, 8(11): e79856.
[DOI]
|
[20] |
SUN CY, CHANG SC, WU MS. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation[J]. Kidney Int, 2012, 81(7): 640-650.
[DOI]
|
[21] |
WU H, ZHANG Y. Reversing DNA methylation:mechanisms, genomics, and biological functions[J]. Cell, 2014, 156(1-2): 45-68.
[DOI]
|
[22] |
TAMPE B, TAMPE D, MULLER CA, et al. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis[J]. J Am Soc Nephrol, 2014, 25(5): 905-912.
[DOI]
|