2. 上海交通大学附属第一人民医院血液科 上海 200080;
3. 上海交通大学医学院附属瑞金医院血液科 上海 200025;
4. 上海交通大学医学院附属仁济医院血液科 上海 200127;
5. 同济大学附属第十人民医院血液科 上海 200072;
6. 上海交通大学医学院附属新华医院血液科 上海 200092;
7. 复旦大学附属中山医院血液科 上海 200032)
2. Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China;
3. Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
4. Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
5. Department of Hematology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China;
6. Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
7. Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
淋巴瘤是发生于淋巴结和结外淋巴组织的恶性肿瘤, 患者免疫力低下, 极易伴发感染。近年来随着治疗方案的不断更新, 治疗强度加大, 淋巴瘤患者预后改善的同时感染的发生也较前有所提高, 尤其是骨髓抑制明显、出现中性粒细胞缺乏(本文简称“粒缺”)状态时[1]。粒缺发热常对患者产生诸多不利影响, 如致化疗减量、治疗延迟[2-3]、住院费用及住院天数增加, 直接影响患者预后。临床针对病原菌的抗生素种类较多, 但随着应用的增加, 细菌耐药性也日趋严重, 给治疗带来了极大困难。因此, 明确淋巴瘤患者临床病原菌分布、易感部位及常见抗生素耐药情况对改善患者预后及减轻其经济负担至关重要。但是, 目前针对粒缺伴发热淋巴瘤患者的研究数据甚少。本研究回顾性分析了上海多家三甲医院血液科收治的粒缺伴发热淋巴瘤患者临床资料, 以明确其感染菌种构成及分布, 并对常用抗生素的耐药情况加以分析, 为临床控制淋巴瘤患者感染提供治疗依据。
资料和方法病例资料 收集2012年1月至2014年12月上海市12家三甲医院血液科微生物培养阳性的粒缺伴发热淋巴瘤患者108例, 其中男性69例, 女性39例。所有患者均符合2008年WHO淋巴瘤诊断标准; 且符合粒缺发热的诊断, 即治疗过程中出现中性粒细胞缺乏(< 0.5×109/L), 且T≥38.0 ℃。删除同一患者相同感染部位的重复菌株。
检测方法 5.6软件对菌株的分布及药敏特点进行分析。药敏结果及耐药株的确定根据2014年美国临床实验室标准化协会(CLSI)标准进行判读[4]。
结果细菌分布 108株致病菌中革兰阴性(G-)菌67株, 占所有菌株的62.04%, 革兰阳性(G+)菌41株, 占37.96%。G+菌中, 葡萄球菌属26株, 占全部细菌的24.07%, 肠球菌属14株, 占12.96%。G-菌中肠杆菌科37株, 占全部细菌的34.26%, 非发酵菌30株, 占27.78%。单种细菌前6位的是肺炎克雷伯菌(18株, 16.67%)、金黄色葡萄球菌(11株, 10.19%)、铜绿假单胞菌(10株, 9.26%)、表皮葡萄球菌(9株, 8.33%)、屎肠杆菌(8株, 7.41%)和大肠埃希菌(8株, 7.41%)(图 1)。
![]() |
图 1 粒缺伴发热淋巴瘤患者致病菌株分布 Fig 1 Distribution of pathogenic bacteria in febrile neutropenic patients with lymphoma |
细菌的标本分布 从108例粒缺伴发热淋巴瘤患者中分离的感染标本包含呼吸道分泌物60株(55.56%), 伤口分泌物19株(17.59%), 导管标本12株(11.11%), 血液标本10株(9.26%), 其他标本7株(6.48%)。呼吸道分泌物标本中G-菌39株, 占所有标本的36.11%, 其次为伤口分泌物(12株, 11.11%)、导管(6株, 5.56%)、血液(4株, 3.7%)、其他(6株, 5.56%)。G+菌感染也以呼吸道部位较多, 共21株, 占总菌株的19.44%, 其余标本分别为伤口分泌物7株(6.48%)、导管6株(5.56%)、血液6株(5.56%)、其他1株(0.93%)。
从呼吸道分泌物标本培养出的菌株以肺炎克雷伯菌居多(9.26%), 其次为金黄色葡萄球菌(6.48%)、铜绿假单胞菌(6.48%)等。伤口标本中最常见的菌株为产酸克雷伯菌, 导管培养以大肠埃希菌多见, 而血液标本则以多种葡萄球菌感染为主(表 1)。
[n (%)] | ||||||
Type | Number | Respiratory tract | Vessel | Secretion | Blood | Other |
G+ | 41 | 21 (19.44) | 6 (5.56) | 7 (6.48) | 6 (5.56) | 1 (0.93) |
Staphylococcus aureus | 11 | 7 (6.48) | 2 (1.85) | 2 (1.85) | - | - |
Staphylococcus epidermidis | 9 | 6 (5.56) | 1 (0.93) | - | 2 (1.85) | - |
Enterococcus faecium | 8 | 4 (3.70) | - | 2 (1.85) | 2 (1.85) | - |
Enterococcus faecalis | 4 | 2 (1.85) | - | 2 (1.85) | - | - |
Avian cocci | 2 | 1 (0.93) | - | 1 (0.93) | - | - |
Staphylococcus haemolyticus | 4 | 1 (0.93) | 2 (1.85) | - | - | 1 (0.93) |
Human staphylococcus | 2 | - | - | - | 2 (1.85) | - |
Streptococcus | 1 | - | 1 (0.93) | - | - | - |
G- | 67 | 39 (36.11) | 6 (5.56) | 12 (11.11) | 4 (3.70) | 6 (5.56) |
Klebsiella pneumoniae | 18 | 10 (9.26) | 1 (0.93) | 2 (1.85) | 2 (1.85) | 3 (2.78) |
Pseudomonas aeruginosa | 10 | 7 (6.48) | - | 2 (1.85) | 1 (0.93) | - |
Stenotrophomonas maltophilia | 7 | 6 (5.56) | - | 1 (0.93) | - | - |
Burkholderia cepacia | 4 | 4 (3.70) | - | - | - | - |
Acinetobacter baumannii | 5 | 2 (1.85) | - | - | - | 3 (2.78) |
E.coli | 8 | 2 (1.85) | 4 (3.70) | 1 (0.93) | 1 (0.93) | - |
Klebsiella | 5 | 2 (1.85) | - | 3 (2.78) | - | - |
Acinetobacter calcium acetate | 1 | 1 (0.93) | - | - | - | - |
Acinetobacter | 1 | 1 (0.93) | - | - | - | - |
Acinetobacter | 1 | 1 (0.93) | - | - | - | - |
Enterobacter aerogenes | 1 | 1 (0.93) | - | - | - | - |
Enterobacter cloacae | 3 | 1 (0.93) | - | 2 (1.85) | - | - |
Enterobacter | 1 | 1 (0.93) | - | - | - | - |
Sphingomonas | 1 | - | 1 (0.93) | - | - | - |
Proteus mirabilis | 1 | - | - | 1 (0.93) | - | - |
Total | 108 | 60 (55.56) | 12 (11.11) | 19 (17.59) | 10 (9.26) | 7 (6.48) |
“-”:Not tested. |
不同致病菌对常用抗菌药物的耐药性分析
常见G+菌 对链球菌以外的40株G+菌进行药敏分析, 结果如表 2所示:26株葡萄球菌属对红霉素、左氧氟沙星、头孢菌素类抗生素耐药率均超过50%, 其中青霉素G类药物100%耐药; 14株肠球菌属亦为多药耐药, 青霉素类、左氧氟沙星、庆大霉素等抗菌药物的耐药率均达到50%。而万古霉素、替考拉宁及利奈唑胺对于G+菌仍较敏感, 敏感度达到100%。此外, 磷霉素对于葡萄球菌及肠球菌也表现出良好的敏感性, 分别达到了80.0%和92.9%。
(rate, %) | |||||||||||||||
Antibiotic | Staphylococcus (n=26) | Enterococcus (n=14) | |||||||||||||
R | I | S | R | I | S | ||||||||||
Clindamycin | 32.0 | 20.0 | 48.0 | - | - | - | |||||||||
Fosfomycin | 20.0 | 0 | 80.0 | 0 | 7.1 | 92.9 | |||||||||
Recurrent neotamine | 28.0 | 8.0 | 64.0 | - | - | - | |||||||||
Eryphilin | 76.0 | 4.0 | 20.0 | - | - | - | |||||||||
Gentamicin | 36.0 | 12.0 | 52.0 | 50.0 | 7.1 | 42.9 | |||||||||
Levofloxacin | 72.0 | 4.0 | 24.0 | 50.0 | 0 | 50.0 | |||||||||
Penicillin G | 100 | 0 | 0 | - | - | - | |||||||||
Oxacillin | 66.7 | 0 | 33.3 | - | - | - | |||||||||
Ampicillin | - | - | - | 50.0 | 0 | 50.0 | |||||||||
Ampicillin/sulbactam | 47.8 | 0 | 52.2 | - | - | - | |||||||||
Cefoxitin | 62.5 | 0 | 37.5 | - | - | - | |||||||||
Cefazolin | 62.5 | 0 | 37.5 | - | - | - | |||||||||
Cefuroxime | 50.0 | 0 | 50.0 | - | - | - | |||||||||
Rifampin | 16.0 | 0 | 84.0 | - | - | - | |||||||||
Nitrofurantoin | - | - | - | 21.4 | 14.3 | 64.3 | |||||||||
Vancomycin | 0 | 0 | 100 | 0 | 0 | 100 | |||||||||
Linezolid | 0 | 0 | 100 | 0 | 0 | 100 | |||||||||
Teicoplanin | 0 | 0 | 100 | 0 | 0 | 100 | |||||||||
“-”:Not tested; R:Resistance rate; I:Intermediate rate; S:Sensitivity rate. |
常见G-菌 所分离的37株肠杆菌对部分青霉素及头孢菌素类抗生素敏感率较低, 耐药率多在24.3%~87.5%, 但对阿米卡星、美罗培南及亚胺培南的敏感率可达80.0%以上。30株非发酵G-杆菌主要以铜绿假单胞菌, 嗜麦芽窄食单胞菌和鲍曼不动杆菌为主, 除鲍曼不动杆菌对氨苄西林及头孢呋辛等抗生素等耐药率较高之外, 其他非发酵G-杆菌对目前常用抗生素均较敏感(表 3)。
(rate, %) | |||||||||||||||
Antibiotic | Enterobacteriaceae | Non-fermented bacillus | |||||||||||||
Pae | Sma | Aba | Bce | ||||||||||||
R | I | S | R | I | S | R | I | S | R | I | S | R | I | S | |
Cefepime | 24.3 | 2.7 | 73.0 | 10.0 | 0 | 90 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
Ceftazidime | 27.0 | 8.1 | 64.9 | - | - | - | - | - | - | 50.0 | 0 | 50.0 | 0 | 0 | 100 |
Cefuroxime | 48.6 | 8.1 | 43.3 | - | - | - | - | - | 83.3 | 16.7 | 0 | - | - | - | |
Cefotaxime | 30.6 | 19.4 | 50.0 | - | - | - | - | - | - | 66.7 | 33.3 | 0 | - | - | - |
Cefazolin | 69.4 | 0 | 30.6 | - | - | - | - | - | - | - | - | - | - | - | - |
Cefaclor | 60.9 | 0 | 39.1 | - | - | - | - | - | - | - | - | - | - | - | - |
Cefoperazone | - | - | - | 10.0 | 0 | 90.0 | - | - | - | - | - | - | - | - | - |
Cefoperazone/sulbactam | 13.0 | 13.0 | 74.0 | 10.0 | 0 | 90.0 | - | - | - | 33.3 | 16.7 | 33.3 | - | - | - |
Ampicillin | 87.5 | 0 | 12.5 | - | - | - | - | - | - | 100 | 0 | 0 | - | - | - |
Piperacillin | 56.8 | 8.1 | 35.1 | 0 | 0 | 100 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
Ampicillin/sulbactam | 41.7 | 19.4 | 38.9 | 10.0 | 0 | 90.0 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
Piperacillin/tazobactam | 10.8 | 16.2 | 73.0 | - | - | - | - | - | - | 50.0 | 16.7 | 33.3 | - | - | - |
Gentamicin | 44.4 | 0 | 55.6 | 10.0 | 10.0 | 80.0 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
Minocycline | - | - | - | - | - | - | 0 | 0 | 100 | - | - | - | 0 | 0 | 100 |
Compound sulfamethoxazole | 54.3 | 0 | 45.7 | - | - | - | 0 | 0 | 100 | 50.0 | 0 | 50.0 | 0 | 0 | 100 |
Ciprofloxacin | 45.7 | 11.4 | 42.9 | 0 | 0 | 100 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
Levofloxacin | - | - | - | - | - | - | 14.3 | 14.3 | 71.4 | - | - | - | - | - | - |
Meropenem | 5.6 | 0 | 94.4 | 10.0 | 0 | 90.0 | - | - | - | 50.0 | 0 | 50.0 | 25.0 | 0 | 75.0 |
Imipenem | 5.7 | 0 | 94.3 | 20.0 | 0 | 80.0 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
Aztreon | - | - | - | 22.2 | 0 | 77.8 | - | - | - | - | - | - | - | - | - |
Amikacin | 16.2 | 2.7 | 81.1 | 10.0 | 10.0 | 80.0 | - | - | - | 50.0 | 0 | 50.0 | - | - | - |
“-”:No tested; R:Resistance rate; I:Intermediate rate; S:Sensitivity rate; Pae:Pseudomonas aeruginosa; Sma:Stenotrophomonas maltophilia; Aba:Acinetobacter baumannii; Bce:Burkholderia cepacia. |
强烈化疗后中性粒细胞减少是最常见的肿瘤并发症, 与患者预后密切相关[5-6]。严重的粒缺极易引发感染, 导致患者再入院、化疗减量或治疗延迟[7-8]。淋巴瘤患者存在不同程度免疫功能缺陷, 化疗后更易出现粒细胞减少。多项研究显示CHOP化疗方案导致院内感染发生率可达17%~50%[9], 更有研究表明62.39%的淋巴瘤患者发生过粒缺发热[10]。及时合理的抗感染用药可明显改善患者预后, 降低死亡率[11-12]。受地域及治疗手段等因素影响, 不同地区、不同病种间病菌感染及耐药存在一定差异。为了解本地淋巴瘤患者感染菌种的分布及耐药特点, 我们回顾性分析了上海市12家三甲医院血液科收治的108例粒缺伴发热淋巴瘤患者临床资料, 为临床抗生素应用提供治疗依据。
从感染的病原菌类型看, 本研究中粒缺伴发热淋巴瘤患者致病菌以G-菌多见, 达62.04%, 其中以肺炎克雷伯杆菌及大肠埃希菌为代表的肠杆菌属居多, 占34.26%, 非发酵菌27.78%;G+菌则以葡萄球菌多见, 主要为凝固酶阴性葡萄球菌, 与国内外文献报道相似[13-16]。单种细菌前6位的是肺炎克雷伯菌(18株)、金黄色葡萄球菌(11株)、铜绿假单胞菌(10株)、表皮葡萄球菌(9株)、屎肠杆菌(8株)和大肠埃希菌(8株), 分别占16.67%、10.19%、9.26%、8.33%、7.41%和7.41%。提示淋巴瘤患者粒缺伴发热可考虑针对肠杆菌属及葡萄球菌进行经验性抗生素选择。
化疗药物及免疫抑制剂可破坏黏膜屏障, 使细菌清除系统受损, 而呼吸道与外界环境相通, 病原体易通过飞沫空气传播。因此, 淋巴瘤患者化疗后极易发生呼吸系统感染[17]。本组资料中, 呼吸道部位感染在所有粒缺发热淋巴瘤患者中所占比例最高, 为55.56%, 且在分离的G+及G-致病菌中, 呼吸道来源标本最多, 分别占36.11%和19.44%。其中最常见致病菌为肺炎克雷伯菌(9.26%), 其次为金黄色葡萄球菌(6.48%)、铜绿假单胞菌(6.48%)、嗜麦芽窄食单胞菌(5.56%)和表皮葡萄球菌(5.56%)。另外随着静脉置管的普遍使用、移植手术的广泛开展, 伤口感染、导管以及血流感染比例逐渐增高, 分别占17.59%、11.11%及9.26%, 其他标本如尿道感染等仅占6.48%。伤口及导管分离菌以产酸克雷伯菌及大肠埃希菌为主的G-菌多见, 而血液标本则以多种葡萄球菌感染的G+为主。
研究显示, 经验性抗生素治疗可以减少60%粒缺发热引起的患者死亡[5]。随着临床抗菌药物的广泛应用, 细菌对药物的耐药性也随之增强, 尤其是耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus, MRSA)、耐万古霉素肠球菌(vancomycin-resistant Enterococcus, VRA)等的产生, 使临床治疗更加棘手。Conn等[18]对212例恶性血液病患者进行了回顾性分析, 结果显示有11.6%的患者对一线抗菌药物耐药, 其中诱导化疗后患者耐药性达17.4%。本研究对检测出的G+菌中葡萄球菌和肠球菌分别进行了药敏分析, 检测结果显示:26株葡萄球菌属对红霉素、左氧氟沙星、头孢菌素类抗生素耐药率均超过50%, 其中青霉素G类药物100%耐药; 14株肠球菌属亦为多药耐药, 其中青霉素类、左氧氟沙星、庆大霉素等抗菌药物的耐药率均达到50%, 而万古霉素、替考拉宁及利奈唑胺敏感度为100%, 提示这3种药物仍可作为G+菌感染的经验性用药。此外, 我们对检测出的G-菌也进行了药敏分析, 结果显示37株肠杆菌对部分青霉素及头孢菌素类抗生素敏感率较低, 耐药率多在24.3%~87.5%, 对阿米卡星、美罗培南及亚胺培南的敏感率均达到80%以上。30株非发酵G-杆菌, 除鲍曼不动杆菌对氨苄西林及头孢呋辛等抗生素耐药率较高之外, 其他菌种对目前常用抗生素均较敏感。
综上所述, 通过对上海地区12家三甲医院血液科淋巴瘤粒缺伴发热患者病原菌分布及耐药性的分析, 我们发现其感染仍以G-菌为主, G+菌比例有所增加。感染部位多发生于呼吸系统, 经验性治疗可首选阿米卡星、亚胺培南、美罗培南、哌拉西林/他唑巴坦、头孢哌酮/舒巴坦、万古霉素、替考拉宁及利奈唑胺等。
[1] |
DALE DC, MCCARTER GC, LYMAN GH, et al. Myelotoxicity and dose intensity of chemotherapy:reporting practices from randomized clinical trials[J]. J Natl Compr Canc Netw, 2003, 1(3): 440-454.
[DOI]
|
[2] |
SCHWENKGLENKS M, JACKISCH C, LEONARD R, et al. Neutropenic event risk and impaired chemotherapy delivery in six European audits of breast cancer treatment[J]. Support Care Cancer, 2006, 14(9): 901-909.
[DOI]
|
[3] |
JACOB LA, LAKSHMAIAH KC, GOVINDBABU K, et al. Clinical andmicrobiological profile of febrile neutropenia in solid tumors and hematological malignancies at a tertiary cancer care center in South India[J]. Indian J Cancer, 2014, 51(4): 464-468.
[DOI]
|
[4] |
CLINICAL AND LABORATORY STANDARDS INSTITUTE.Performance standards for antimicrobial susceptibilitv testing: Twenty-fourth informational supplement[S].CLSI document M100-S24.Wayne, PA: CLSI, 2014.
|
[5] |
KUDERER NM, DALE DC, CRAWFORD J, et al. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients[J]. Cancer, 2006, 106(10): 2258-2266.
[DOI]
|
[6] |
LEWIS MA, HENDRICKSON AW, MOYNIHAN TJ. Oncologic emergencies:Pathophysiology, presentation, diagnosis, and treatment[J]. CA Cancer J Clin, 2011, 61(5): 287-314.
[URI]
|
[7] |
KLASTERSKY JA, PAESMANS M. Treatment of febrile neutropenia is expensive:prevention is the answer[J]. Onkologie, 2011, 34(5): 226-228.
[DOI]
|
[8] |
HENDRICKS AM, LOGGERS ET, TALCOTT JA. Costs of home versus inpatient treatment for fever and neutropenia:analysis of a multicenter ran-domized trial[J]. J Clin Oncol, 2011, 29(30): 3984-3989.
[DOI]
|
[9] |
PETTENGELL R, BOSLY A, SZUCS TD, et al. Multivariate analysis of febrile neutropenia occurrenee in patients with non-Hodgkin lymphoma:data from the INC-EU Prospective Observational European Nentropenia Study[J]. Br J Haematol, 2009, 144(5): 677-685.
[DOI]
|
[10] |
王亮, 司玉玲. 恶性血液病患者中性粒细胞缺乏伴发热的临床及微生物特征[J]. 实用医学杂志, 2017, 33(14): 2345-2348. [DOI]
|
[11] |
KANG CI, KIM SH, PARK WB, et al. Bloodstream infections caused by antibiotic-resistant gram-negative bacilli:risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome[J]. Antimicrob Agents Chemother, 2005, 49(2): 760-766.
[DOI]
|
[12] |
LODISE TP JR, PATEL N, KWA A, et al. Predictors of 30-day mortality among patients with Pseudomonas aemginosa bloodstream infections:impact of delayed appropriate antibiotic selection[J]. Antimicrob Agents Chemother, 2007, 51(10): 3510-3515.
[DOI]
|
[13] |
ALONSO JJ, CÁNOVAS A, BARREIRO JG, et al. Infectious complications of chemotherapy in clinically aggressive mature B and T cell lymphomas[J]. Eur J Intern Med, 2012, 23(3): 255-260.
[DOI]
|
[14] |
NESHER L, ROLSTON KV. The current spectrum of infection in cancer patients with chemotherapy related neutropenia[J]. Infection, 2014, 42(1): 5-13.
[DOI]
|
[15] |
LAKSHMAIAH KC, MALABAGI AS, GOVINDBA BU, et al. Febrile neutropenia in hematological malignancies:clinical and microbiological profile and outcome in high risk patients[J]. J Lab Physicians, 2015, 7(2): 116-120.
[DOI]
|
[16] |
朱骏, 周一飞, 蒋瑛, 等. 粒细胞缺乏与非粒细胞缺乏血液病患者临床分离菌的分布及耐药性特点比较[J]. 临床血液学杂志, 2017, 30(4): 249-254. [URI]
|
[17] |
PARK S, KANG CI, CHUNG DR, et al. Clinical significance of non-neutropenic fever in the management of diffuse large B-cell lymphoma patients treated with rituximab-CHOP:comparison with febrile neutropenia and risk factor analysis[J]. Cancer Res Treat, 2015, 47(3): 448-457.
[URI]
|
[18] |
CONN JR, CATCHPOOLE EM, RUNNEGAR N, et al. Low rates of antibiotic resistance and infectious mortality in a cohort of high-risk hematology patients:A single center, retrospective analysis of blood stream infection[J]. PLoS One, 2017, 12(5): e0178059.
[DOI]
|